
PACIFIC SOFTWARE RESEARCH CENTER 
TECHNICAL REPORT 

CONTRACT NO. F19628-96-C-0161 
CDRL SEQUENCE NO. [CDRL 0002.9] 

Prepared for: 
USAF 

Electronic Systems Center/AVK 

Prepared by: 
Pacific Software Research Center 

Oregon Graduate Institute of Science and Technology 

•wsssssr 
Appr^h,rtion Unlimited Distribution 

OREGON 

GRADUATE 

INSTITUTE OF 

SCIENCE & 

TECHNOLOGY 

Kjrt 

v^n 



CONTRACT NO. F19628-96-C-0161 
CDRL SEQUENCE NO. [CDRL 0002.9] 

Prepared for: 
USAF 

Electronic Systems Center/AVK 

Prepared by: 
Pacific Software Research Center 

Oregon Graduate Institute of Science and Technology 
PO Box 91000 

Portland, OR 97291 

Pacific Software Research Center 
Collection of papers from 

January 1, 1999 to March 31, 1999 

"Formal Verification of Explicityly Parallel Microprocessors" 
"Symbolic Simulation of Microprocessor Models using Type Classes in Haskell" 

"The Internet As A Medium For Software Engineering Experiments" 
"Top-level Refinement in Processor Verification" 

"On embedding a microarchitectural design language within Haskell" 
"Elementary Microarchitecture Algebra" 

"Recursive Function Definition over Coinductive Types" 
"DSL Implementation Using Staging and Monads" 

"Erasure for termination proofs" 

OTIC QUALITY INSPECTED 4 



Formal verification of explicitly parallel 
microprocessors* 

Byron Cook, John Launchbury, John Matthews, and Dick Kieburtz 
{byron,j1,j olmm,dick}Qcse.ogi.edu 

Version: Fri Mar 5 19:27:54 PST 1999 

Abstract. An emerging trend in microprocessor design is to move com- 
plexity from a machine's microarchitecture into its instruction-set ar- 
chitecture. This trend will allow compilers to express inter-instruction 
dependency information that current superscalar out-of-order machines, 
such as the Pentium III, derive while performing computation. This trend 
will change the nature of microprocessor verification: The microarchitec- 
tural models will become simpler; but their specifications will become 
more subtle. 
This paper explores the implications that this trend will have on micro- 
processor verification. We develop an explicitly parallel instruction-set 
architecture motivated by Intel's IA-64 and discuss possibilities for mi- 
croarchitectural implementations. We then explore correctness criteria 
for relating microarchitectures to explicitly parallel instruction sets. 

1    Introduction 

Historically, each generation of microprocessors has been more aggressive than 
the previous generation in its search and exploitation of instruction-level paral- 
lelism [23]. For example, Intel's Pentium III (which is based on the P6 microar- 
chitecture [6,12]) maintains a graph of 40 instructions, from which it analyzes 
inter-instruction dependencies and dynamically schedules instructions into exe- 
cution units. 

There is a cost to this sophistication. Complex superscalar out-of-order mi- 
croarchitectures lead to larger, hotter microprocessors that consume more power 
[8]. They are difficult to design and debug, and typically have long critical paths, 
which inhibit faster clock speeds [5]. Some microarchitects feel that the returns 
are diminishing from their continued investment into the run-time discovery of 
instruction-level parallelism [25]. 

A new trend is developing. Intel [13,14], Hewlett-Packard [13,19], Compaq 
[30], Tera [2], Elbrus [9] and others are all extending or designing new instruction- 
set architectures with constructs for explicit parallelism. These features include 
predication [1], speculative load instructions [17], and annotations that describe 
the dependencies between instructions [28]. 

* This research is supported in part by Intel, the National Science Foundation, the 
Defense Advanced Research Projects Agency, and Air Force Material Command. 



What will these new instruction-sets look like? How will we verify microar- 
chitectures against them? These are the questions that we hope to address. In 
this paper, we construct a formal semantics for an instruction-set architecture 
based on publicly available information regarding Intel's new IA-64 [10]. We 
then develop a clustered microarchitectural design, and discuss its correctness 
criteria. 

2      OA-64: an explicitly parallel instruction set 

This section introduces and motivates the emerging style of architecture design 
through the Oregon Architecture (OA-64) — an explicitly parallel instruction 
set. OA-64 extends a traditional instruction set in three ways: 

Predication allows for the conditional execution of instructions. 
Speculative loads are instructions that can be issued before the value they 

produce is needed without risk of raising an exception. 
Parallelism annotations describe the dependencies between instructions. 

To see how these features fit into OA-64, look at Fig. 1 which contains an 
OA-64 code of the factorial function: 

- An OA-64 program is a finite sequence of packets, where each packet consists 
of three instructions. OA-64 programs are addressed at the packet-level. That 
is, instructions are fetched in packets, and branches can jump only to the 
beginning of a packet. 

- Instructions are annotated with thread identifiers. For example, the 0 in the 
check_s instruction declares that instructions with thread identifiers that 
are not equal to 0 can be executed in any order with respect to the check_s 
instruction. 

- Packets can be annotated with a fence directive (FENCE), which directs the 
machine to retire all in-flight instructions before executing the following 
packet. 

- Instructions are predicated on boolean-valued registers. For example, the 
check-s instruction will only be executed if the value of p5 is true in the 
current register-file state. 

2.1    Calculating regions 

Thread identifiers and fences are annotations to express concurrency information 
about instructions. One useful presentation of this concurrency information is 
a directed graph whose nodes are sets of threads (which are finite instruction 
sequences) that occur between fence directives. We call each set of threads a 
region. The general idea is that that an OA-64 machine will execute one region 
at a time. In this manner, all values computed in previously executed regions 
are available to all threads in the current region. 



101: check.s r2 if p5 in 0 
r3 •<- r2 if p5 in 0 

(FENCE) rl «- 1 if p5 in 1 

102: p2,p3 ■<- r2 != 0 if p5 in 0 
r3 <- r2 if p5 in 1 

(FENCE) nop 

103: rl 4- rl * r3 if p2 in 0 
r2 «- r2 - 1 if p2 in 1 
pc <- 102 if p2 in 2 

104: store 401 rl if p3 in 3 
pc «- 33 if p3 in 4 

(FENCE) nop 

Fig. 1. OA-64 implementation of factorial function. 

In this section we derive the meaning of the code in Fig. 1 by calculating its 
regions. We assume that packet 100 issues a fence, and that before entering this 
code, the machine has loaded a value into register r2 with the speculative load 
instruction (loacLs). 

In packet 101, the check_s instruction declares that the machine is about to 
use the value stored into r2. It is at this point that the machine should raise any 
exceptions that might have been encountered while speculatively loading data 
into r2. The first packet also initializes the values of registers rl and r3. Because 
r3 depends on the value of r2, the check_s instruction must be executed before 
writing to r3 — this is expressed by placing the same thread-identifier (0) in the 
two instructions. The calculation of rl, however, can be executed in any order 
with respect to the 0 thread. 

The fence directive in packet 101 instructs the machine to retire the active 
threads before executing the following packet. Because both packets 100 and 
101 issues fence directives, packet 101 forms its own region: 

where boxes represent threads. Instructions within a thread must be executed in 
order. Threads, however, can be executed in any interleaving-order with other 
threads. Packet 101 forms a region — therefore the machine is required to syn- 
chronize the state before executing the next packet. 

Because packet 102 is also fenced, it also forms its own region: 



The comparison instruction sets the predicate register p2 to true if r2 is not 
equal to 0. The value of p3 is set to the negation of p2. 

Because packet 103 is not fenced, but packet 104 is, the next region is formed 
from packets 103 and 104: 

This region contains 5 singleton threads. Note that, if both p2 and p3 were 
true, two threads would write to the program counter (pc) in an arbitrary order. 
However, because p2 and p3 are the negation of one another, for a given run of 
the region only one thread will write to pc. 

Assignments to the program counter within a region are visible to the ma- 
chine's fetch mechanism only after a fence directive has been issued. Therefore, 
a trace of an OA-64 program can be viewed as an infinite path through the finite 
directed graph formed by regions and their successors: 



At first glance, issuing speculative loads and calculating regions may appear 
strange. However this is precisely the sort of control calculation an out-of-order 
machine performs while executing a traditional program [25]. For example 

- An out-of-order execution core allows instructions following a memory load 
to execute before retiring the load. The Pentium III temporarily stores com- 
pleted successors of a load into a content-addressable array until the load is 
retired, and flushes the array if the load raises an exception. 
The OA-64 code fragment in Fig. 1 uses a check_s instruction that checks 
to see if the previously issued speculative load succeeded before executing 
the instructions that depend on it. 

- A traditional encoding of the factorial function would use a conditional 
branch in the place of the predicate calculation. A machine with branch 
speculation might predict that the branch is not taken and issue the instruc- 
tions in the third packet before calculating the condition. In this case the 
branch target buffer is acting as the predicate register file. 
The OA-64 program calculates a predicate, issues instructions from both 
sides of the would-be branch, and in the end only commits the instructions 
that satisfy the predicate. 

- In a traditional instruction set the encoding of the factorial function would 
leave much of the instruction-level parallelism implicit. The scheduling logic 
within an out-of-order machine might analyze the register references and 
discover that the subtract and multiply instructions are not dependent and 
can be scheduled out-of-order. 
In OA-64, the compiler (or programmer) declares the dependencies between 
instructions. If the compiler expresses that the subtract and multiply in- 
structions are not dependent, the machine may retire them out-of-order. 

3    Semantics of OA-64 

In this section we describe a formalization of OA-64 that facilitates the mathe- 
matical verification of microarchitectural implementations. The meaning of OA- 
64 is defined by a set of restrictions on the source program, an initial state, and 
a transition relation that describes how instructions effect the state. 

3.1    Source code restrictions 

The following restrictions are placed on OA-64 programs: 

- a multiple packet region must always execute at least one branch instruction; 
- a branch instruction can only jump to a packet that immediately follows a 

packet with a fence directive, or to the first packet in the program; 
- a program must be a finite sequence of packets; 



3.2    Initial state and transition relation 

We view OA-64 as a two-level language — the bottom level, or base-level, is a 
vanilla RISC instruction set with support for speculative loads; the top level, 
or concurrency-level, handles predication, thread identifier annotations and the 
fence directives. The concurrency-level language is used to express dependencies 
between base-level instructions. 

The semantics of OA-64 highlight this perspective by defining a traditional 
base-level transition relation and a concurrency-level transition relation. The 
base-level relation > is defined over instructions and pairs of base-level architec- 
tural states — called base-states — which represent the state of the register file 
and memory (the program counter is modeled as the special register pc in the 
register file). The expression: 

A,w>F 

asserts that instruction w in state A can execute and result in state F in t>. 
This relation is simply the familiar instruction-set style of relation used in many 
papers, i.e. A, (x «- y + z) > A[x ■-* A(y) + A(z)] 

The concurrency-level transition relation ► is defined in Fig. 2 over pairs of 
concurrency-level architectural states, called concurrency-states, which have the 
form: 

(P,A,S) 

where P is a finite sequence of packets representing the OA-64 program, and 
A is an base-level state. £ is the state of the region, which is a finite set of 
finite instruction sequences. Given an OA-64 program, P, the machine's initial 
concurrency-state is the triple: 

(P, init, 0) 

where init is an initialized base-state, and 0 is the empty region. 
In the initial concurrency-state, or when the machine has completely executed 

a region, the concurrency-state of the machine will be in the following form 

In this case, the rule next (in Fig. 2) states that the machine should use the 
value of pc in the current base-state (A) to fetch the next region. The function 
region, when given an OA-64 program and an index, returns the region pointed 
to by the index. Also, the base-state is updated by incrementing the program 
counter. 

If the region in the current concurrency-state is not empty, then it will have 
the form 

(P, A,(... ,(w if p):ws,...)) 

where (w if p) is the first instruction of an arbitrarily chosen thread1. If, in the 
base-state A, the value of p is false then the instruction w is thrown away (rule 
1 We use : as a constructor of lists. In the expression x : xs, x is the first element in 

the list and xs represents the remaining elements 



skip in Fig. 2). Otherwise, if p is true in the base-state, then a new base-state 
r is related to A and w by > (rule execute). 

(next) (P,A0)  ►   (P,4[pcK>pc + l],region(P,Zi(pc))) 

(skip) {P,A,{...,(w if p):ws,...))   ►   (P,A,(...,ws,...))        if-nZi(p) 

(execute) A'W   >   F                                       ifA(n) 
(P,A,(...,(wiip):ws,...))    ►   (P,r,(...,ws,...))        UJW 

Fig. 2. Concurrency-level semantics of OA-64 

4    Columbia: An OA-64 microarchitecture 

The advantage of OA-64 is that the microarchitecture can dedicate more of its 
resources to computation, and less to scheduling. This section presents an outline 
of a possible microarchitecture for OA-64. 

The picture in Fig. 3 is of Columbia, a clustered OA-64 microarchitecture. 
The machine's execution core is composed of three independent execution pipelines, 
or clusters. At each cycle Columbia fetches a packet from the ICache and feeds 
it to the clusters. In the case that a packet contains a fence directive, the machine 
stops fetching instructions until all of the clusters have been flushed. 

Fetched instructions travel from the ICache to the Route unit, where they 
are routed to one of three pipelined execution clusters based on their thread- 
identifier (modulus 3). The execution clusters act as traditional in order pipelined 
execution cores, except that they share a communal register file (RF) and data 
cache (MCache). At each clock cycle the clusters calculate how many instruc- 
tions they can accept on the next cycle. The minimum of these values is sent to 
the control logic (because all of the instructions in a packet might be routed to 
one execution cluster). The control logic is also signaled when all of the clusters 
are in a flushed state. 

The fetch logic uses the register file's program counter value. The Valid 
circuit determines, based on whether or not the machine is still servicing a fence 
directive, if the program counter should be used (i.e. the machine has finished 
processing a region). 

Notice that, in contrast to the large amounts of interconnected state found 
in superscalar out-of-order models, Columbia's state is smaller and mostly local 
(i.e. local buffers within execution clusters). This is good news for everyone: The 
reduced state will be simpler for algorithmic formal verification; and the reduced 
interaction between components will be good for deduction. 



fencing 

Fig. 3. Columbia microarchitecture — pictured here with three pipeline clusters 

5    Verification 

Explicitly parallel machines aim to exploit much of the same instruction-level 
parallelism that superscalar out-of-order machines use — with a twist. They use 
less hardware, but are more difficult to program. It is therefore natural that 
the verification of explicitly parallel microarchitectures will be similar to the 
verification of superscalar out-of-order machines — with a twist. They will be 
easier to prove correct, but the correctness criteria are more difficult to define. 

Assume that, for a given microarchitectural model, £„ is a projection rep- 
resenting the machine's region state at time n, and Sn is the base-state within 
the microarchitecture. In the case of Columbia, £ is the contents of the pipelines 
(and their buffers) and S equals the contents of the register file and memory 
cache. 

The criteria that we advocate for OA-64 are, for a given program (P), the 
concurrency-state formed with £ and S should infinitely often enter into a reach- 
able concurrency-state denned by the closure of the instruction-set semantics 
(safety) 

Vra.Bn'. n<n' A (P,zero,0) ► (P,6n>,Zn<) 



and that the machine infinitely often makes progress in the computation (live- 
ness) 

Vn. (P,zero,0) ► (P,6n,£n)   =>   3n'. n< n' A (P,£„,£„) ► (P,8n,,£„-) 

The key here is regions, which declare the existence of synchronization points 
— concurrency-states along the path of execution in which threads have access 
to the results of computation from previously executed threads. In ►, every 
concurrency-states resulting from a next transition is a synchronization point. 
The formulation of OA-64, coupled with the constraints on the input program, 
guarantee that regions are always finite. Therefore OA-64 guarantees that the 
transition next will be applied infinitely often. 

Suppose that, for a given program, the concurrency-state transition graph 
(based on the region element of the concurrency-state) has the following form 

Pasture A 

where the black circles are the synchronization points. Also, suppose that the 
microarchitectural transition graph (based on the value of the microarchitectural 
thread state £) has the form 



Pasture A 

Pasture C 

where the black circles represent microarchitectural synchronization points. Be- 
tween synchronization points the microarchitecture might make more or fewer 
transitions than the instruction-set architecture. However, when viewing syn- 
chronization points, the microarchitecture's transitions are contained by the 
architecture. The verification problem is then to demonstrate that, when the 
microarchitecture has reached a synchronization point, the state of the register 
file and the region that it is executing relates to a reachable concurrency-state 
in OA-64. 

OA-64 



5.1    Adapting pipeline flushing methods 

When paired with an inductive proof over the infinite path of regions, the pipeline 
flushing method [4] for pipeline verification can be adapted to imply the proposed 
safety property. 

In Burch and Dill's formulation, one must prove the commuting square for 
all possible instructions I: 

microarchitectural 
state   (old)   si 

flush step microarchitectural 
state (old.flushed) 

projection architectural 
state (old) si' 

microarchitectural 
step with   / 

architectural 
step with   / 

microarchitectural 
state    (new) .v2 

flush step microarchitectural 
state (new.flushed) 

projection architectural 
state    (new) s2' 

In the setting of explicitly parallel architectures, we propose letting I range 
over regions instead of instructions. That is, assume that the microarchitecture 
begins to execute a region in synchronization point si, and that s2 is the next 
synchronization point resulting from the execution starting at si. Let si' be the 
result of flushing and projecting out the architectural state from si, and s2' be 
the analogous calculation from s2. Does there exist a path in ► from si' to s2'?. 

A drawback to this formulation is that I no longer has a clear bound (ie. 16 
bit instructions). Instead, I is bounded by the size of regions — which is not 
satisfactory for model checking. In our verification, we made deductive arguments 
based on the fact that some finite number of cycles after fetching a packet with 
a fence declaration, Columbia transitions into a synchronization point. We used 
a symmetry-reduction styled argument to show that, if the microarchitecture 
fetched an entire region before executing (given sufficient buffering), then that is 
the same as concurrently executing and fetching that region. The more abstract 
transition relation calculated from this symmetry argument was then compared 
to ►. The final step was to show that, when the machine has entered into a 
synchronization point, that it correctly transitions to the next region. This final 
step was proved using Symbolic Trajectory Evaluation [15] 

A useful characteristic of Columbia-like microarchitectural models is that the 
number and arrangement of clusters doesn't affect the correctness of a microar- 
chitectural design. This is because the transition relation ► allows for any order 
of evaluation when many threads are trying to write to a shared location in the 
object state. 

No matter how many clusters the execution core employs, so long as the 
clusters behave analogously to >, the correctness of the execution core outlined 
in Fig. 3 can be abstractly characterized by the following assertion (certain pre- 
conditions have been omitted): 

(5,J„,(schedule(fetchedn,^n))) ►{execute,skiP} {S,ön+i,{£,n+i)) 



where ►{execute,skip} is the closure of the relation ► using only the rules execute 
and skip, and schedule distributes a packet into a partial region. 

Note to reviewers: We're waiving our hands a bit in this section. The state- 
ments made in this section are based on apencil-and-paperproof. We are building 
a proof in Isdbelle which should be done before a camera-ready version of this 
paper would be due. 

6 Related work 

The work in this paper is closely aligned in approach with the existing research 
on the verification of superscalar out-of-order machines [3,7,11,24,26,27], all 
of which use refinement based techniques or flushing (which can be cast as an 
instance of refinement). In most of these papers, extra information about the 
dependencies, which OA-64 makes explicit, has been added to the models. For 
example, Damm and Pnueli construct a non-deterministic data-flow machine 
that computes the same result as the instruction-set architecture and is refined 
by a Tomasulo-like transition system. Of course their machines can only execute 
finite instruction streams that do not contain branches; but their abstract data- 
flow machine is similar to OA-64. 

The instruction set of the Java virtual machine includes facilities for threaded 
execution. Unfortunatly, the formalizations of the Java virtual machine have, to 
date, concentrated mainly on type-safety ([22], for example) or have assumed a 
single-threaded semantics (such as [29]). 

Techniques from formal verification have been used to automate the test 
generation for a dual-issue DLX microprocessor [16] which can be viewed as 
a simple explicitly parallel machine. The Stanford Validity Checker has been 
used to show properties of this same processor [18]. However, that paper focuses 
primarily on the quantifier-free logic of equality with uninterpreted functions 
and does not go into detail about the properties verified. 

7 Future work 

The upcoming explicitly parallel instruction-set architectures will take many 
forms; OA-64 is only one conservative possibility. For example, the real instruc- 
tion sets might allow sychronization between individual threads; or they might 
allow branch instructions to take immediate effect on the machine's program 
counter. Meanwhile, real explicitly parallel microarchitectures will use branch 
prediction, or even out-of-order clusters to improve performance. The work pre- 
sented here is conservative in its specification and model. We hope to verify more 
sophisticated microarchitectures against more realistic instruction sets. 

The use of layered transition relations (► and >) has been invaluable to 
the understanding and verification of explicitly parallel machines. We hope to 
generalize this notion, with separate levels for each instruction-set feature: con- 
currency, predication, speculation, etc. We may find that a particular piece of 



a microarchitecture implements a single-level of an instruction-set's semantics; 
which might allow us to treat the other semantic layers much more abstractly 
— perhaps as uninterpreted functions. 

Letting the / range over entire regions in Section 5.1, while theoretically 
interesting, makes algorithmic verification difficult. We hope to find other finer- 
grained approaches (perhaps still based on flushing) that imply correctness. 

McMillan's use of symmetry [21] might prove to be useful in the setting 
of multiple symmetric execution clusters. It should be possible that a small 
set of cluster configurations could represent all possible cluster configurations. 
McMillan applied this technique to reduce the number of reservation station 
and execution unit pairs in his model of Tomosulo's algorithm. He represented 
all configurations with two reservation station / execution unit pairs — one to 
represent the active pair, and the other to represent all other pairs. 

Prom ►, it might be interesting to develop a reference model and verify more 
sophisticated OA-64 models against it using the algebraic approach proposed 
by Matthews and Launchbury [20]. This will involve developing (perhaps non- 
finite state) circuits that model the characteristics of the instruction set such as 
predicated execution, speculative execution, etc, and then using algebraic laws 
to transform the microarchitectural model into a reference machine. 

8    Acknowledgments 

For their contributions and comments, we would like to thank Mark Aagaard, 
Todd Austin, and John O'Leary of Intel Corporation; Tim Leonard and Abdelil- 
lah Mokkedem of Compaq/Digital Corporation; Mandayam Srivas of SRI; and 
Tito Autrey, Nancy Day, Sava Krstic, Jeff Lewis, Thomas Nordin, and Mark 
Shields of OGI. 

References 

1. ALLEN, J., KENNEDY, K., PORTERFIELD, C, AND WARREN, J. Conversion of con- 
trol dependence to data dependence. In The 10th ACM Symposium on Principles 
of Programming Languages (Jan. 1983). 

2. BOKHARI, S., AND MAVRIPLIS, D. The Tera multithreaded architecture and un- 
structured meshes. Tech. Rep. NASA/CR-1998-208953, NASA/ICASE, 1998. 

3. BURCH, J. Techniques for verifying superscalar microprocessors. In 33rd annual 
Design Automation Conference (Las Vegas, Nevada, June 1996). 

4. BURCH, J., AND DILL, D. Automatic verification of pipelined microprocessor 
control. In 6th International Conference of Computer Aided Verification (Stanford, 
California, June 1994). 

5. CASE, B. IA-64'S static approach is controversial. Microprocessor Report 11, 16 
(1997). 

6. COOK, B., LAUNCHBURY, J., AND MATTHEWS, J. Specifying superscalar micropro- 
cessors with Hawk. In Workshop on Formal Techniques for Hardware (Maarstrand, 
Sweden, June 1998). 



7. DAMM, W., AND PNUELI, A. Verifying out-of-order executions. In Conference on 
Correct Hardware Design and Verification Methods (Montreal, Canada, 1997). 

8. DlEFENDORFF, K.  Microarchitecture in the ditch.  Microprocessor Report 12, 17 
(1998). 

9. DlEFENDORFF, K. The Russians are coming. Microprocessor Report 13, 2 (1999). 
10. DULONG, C. The IA-64 architecture at work. IEEE Computer 31, 7 (1998). 
11. Fox, A. C, AND HARMAN, N. A. Algebraic models of superscalar microprocessor 

implementations: A case study. In Prospects for Hardware Foundations. Springer- 
Verlog, 1998. 

12. GWENNAP, L. Intel's P6 uses decoupled superscalar design. Microprocessor Report 
9, 2 (1995). 

13. GWENNAP, L. Intel, HP make EPIC disclosure. Microprocessor Report 11, 14 
(1997). 

14. GWENNAP, L. Intel outlines high-end roadmap. Microprocessor Report 12, 14 
(1998). 

15. HAZELHURST, S., AND SEGER, C.-J. H. Symbolic trajectory evaluation. In Formal 
Hardware Verification. Springer-Verlog, 1997. 

16. Ho, R. C, YANG, C. H., HOROWITZ, M. A., AND DILL, D. Architecture validation 
for processors. 

17. JOHNSON, D. Techniques for mitigating memory latency in the the PA-8500 pro- 
cessor. In Hot Chips 10 (Palo Alto, Aug. 1998). 

18. JONES, R. B., DILL, D. L., AND BURCH, J. R. Efficient validity checking for 
processor verification. In Proceedings of the 1995 International Conference on 
Computer-Aided Design (San Jose, 1995). 

19. KATHAIL, V., SCHLANSKER, M., AND RAU, B. R. HPL PlayDoh architecture 
specification: Version 1.0. Tech. Rep. HPL-93-80, Hewlett Packard Laboratories, 
1993. 

20. MATTHEWS, J., AND LAUNCHBURY, J. Elementary microarchitecture algebra. 
In International Conference on Computer-Aided Verification (Trento, Italy, July 
1999). 

21. MCMILLAN, K. Verification of an implementation of Tomasulo's algorithm by 
compositional model checking. In International Conference on Computer-Aided 
Verification (Vancouver, Canada, July 1998). 

22. QIAN, Z. A formal specification of a large subset of Java(tm) virtual machine 
instructions for objects, methods and subroutines. In Formal Syntax and Semantics 
of Java(tm). Springer-Verlog, 1998. 

23. RAU, B. R., AND FISHER, J. A. Instruction-level parallel processing: History, 
overview and perspective. The Journal of Supercomputing 7, 1 (1993). 

24. SAWADA, J., AND HUNT, W. Processor verification with precise exceptions and 
speculative execution. In International Conference on Computer-Aided Verification 
(Vancouver, Canada, July 1998). 

25. SCHLANSKER, M., RAU, B. R., , MAHLKE, S., KATHAIL, V., JOHNSON, R., ANIK, 

S., AND ABRAHAM, S. G. Achieving high levels of instruction-level parallelism 
with reduced hardware complexity. Tech. Rep. HPL-96-120, Hewlett Packard Lab- 
oratories, 1996. 

26. SHEN, X., AND ARVIND. Design and verification of speculative processors. In 
Workshop on Formal Techniques for Hardware (Maarstrand, Sweden, June 1998). 

27. SKAKKEBAEK, J., JONES, R., AND DILL, D. Formal verification of out-of-order 
execution using incremental flushing. In International Conference on Computer- 
Aided Verification (Vancouver, Canada, July 1998). 



28. SONG, P. Demystifying EPIC and IA-64. Microprocessor Report 12, 1 (1998). 
29. STEPHENSON, K. Towards an algebraic specification of the Java virtual machine. 

In Prospects for Hardware Foundations. Springer-Verlog, 1998. 
30. TULLSEN, D. M., EGGERS, S. J., EMER, J. S., LEVY, H. M., LO, J. L., AND 

STAMM, R. L. Exploiting choice: Instruction fetch and issue on an implementable 
simultaneous multithreading processor. In 23rd Annual International Symposium 
on Computer Architecture (Philadelphia, PA, May 1996). 



Symbolic Simulation of Microprocessor Models 
using Type Classes in Haskell 

Nancy A. Day, Jeffrey R. Lewis, and Byron Cook 

Oregon Graduate Institute, Portland, OR, USA 
{nday, jlewis, byron}@cse.ogi.edu 

Abstract. We present a technique for doing symbolic simulation of mi- 
croprocessor models in the functional programming language Haskell. We 
use polymorphism and the type class system, a unique feature of Haskell, 
to write models that work over both concrete and symbolic data. We offer 
this approach as an alternative to the technique of uninterpreted con- 
stants. Compared with previously reported symbolic simulation efforts 
in theorem provers, the performance of our approach compares favor- 
ably, and indeed is several times faster. We illustrate our work with both 
a simple state-based example and a complex, superscalar, out-of-order, 
stream-based microprocessor model. 

1    Introduction 

Symbolic simulation is becoming an important technique for verification of cir- 
cuits. It can be used by itself for validation of microcode [Gre98] and it is a key in- 
gredient to verification techniques such as symbolic trajectory evaluation [SB95] 
and Burch-Dill style microprocessor verification [BD94,JDB95]. Symbolic simu- 
lation executes a model for multiple data values in a single simulation run. For 
example, a symbolic program that we discuss in this paper takes the input data 
x and calculates x4 (or x * x * x * x). 

Symbolic simulation of microprocessor models written in the Haskell pro- 
gramming language [PH97] is possible without extending the language or its 
compilers and interpreters. When symbolically simulating a simple microproces- 
sor model, we achieved performance of approximately 58 300 instructions per 
second. We describe how Haskell's type class system allows a symbolic domain 
to be substituted for a concrete one without changing the model or explicitly 
passing the operations on the domain as parameters. Algebraic manipulations 
of values in the symbolic domain carry out simplifications similar to what is 
accomplished by rewriting in theorem provers to reduce the size of terms in the 
output. 

The infrastructure required for using symbolic values and maintaining a sym- 
bolic state set is reusable for simulation of different models. We believe the 
approach presented in this paper may be applied in other languages with user- 
defined data types, polymorphism, and overloading. However, a key requirement 
0 Draft paper submitted to CHARME'99, 7 March 1999. 



is that overloading work over polymorphic types. Few programming languages 
support this, although a different approach using parameterized modules, as in 
SML, might also work well. Haskell's elegant integration of overloading with type 
inference and the clear semantics of the language make it amenable to formal 
verification. 

2    Example 

To illustrate our technique, we use the simple, non-pipelined, state-based proces- 
sor model given in Moore's paper on symbolic simulation [Moo98]. First, we ex- 
plain the model and demonstrate concrete simulation. Next, we show how using 
more general types for the data in the model makes it possible to simulate inter- 
changeably concrete and symbolic values. The full source code for this example in 
Haskell can be found at http://www.cse.ogi.edu/~nday/Papers/sym.sim.html. 

2.1    Model 

The opcodes of the simple machine are described using a data type: 

data Op = MOVE Addr Addr 
I MOVI Addr Data 
I ADD Addr Addr 
I SUBI Addr Data 
I JUMPZ Addr Loc 
I JUMP Loc 
I CALL String 
I RET 

For now, interpret the type names Addr (memory address), Loc (location), and 
Data as integers. 

The machine's visible state is captured by five values: the program counter, 
the stack pointer, the data memory (modeled as a list, and indexed by integers), 
the halt signal, and the program. The program is indexed by a name and location 
because separate routines are stored in distinct memory. Thus, the program 
counter and elements of the stack consist of both a name and a location. The 
program consists of names with associated lists of instructions. The machine's 
state is captured using the following data type1: 

data MachState = ST  ((String,Loc),   [(String,Loc)],   [Data],  Bool,  Program) 

The meaning of each instruction is described by individual functions that 
take a machine state and return a machine state, such as: 

add a b  (ST  ((name,loc),stk,  mem,halt,code))   = 
mkState   ((name,loc+l),   stk, 

put a  (mem  'at'   a + mem  'at'  b)  mem,  halt,   code) 

1 In Haskell, list types are represented using square brackets ("[ ... ]"). 



subi a b  (ST  ((name,loc),stk,  mem,halt,code))   = 
mkState  ((name,loc+l),  stk, put a ((mem 'at'  a)  - b) mem, halt,  code) 

jumpz a b (ST  ((name.loc),stk,  mem,halt,code))  = 
if   ((mem 'at'  a)  === 0) 
(mkState  ((name,b),stk, mem,halt,code)) 
(mkState  ((name,  loc + i),  stk, mem, halt,  code)) 

The semantics of the ADD instruction increase the program counter by one and 
put the result of the "+" operation on the values in memory locations a and b 
in memory location a. The function at is an indexing function. In Haskell, to 
use a regular identifier as an infix operator, you surround it with backquotes, 
as we did above. The SUBI instruction subtracts the immediate value b from 
the memory location a. The JUMPZ instruction sets the program counter to the 
value b if memory location a has the value 0. The operator === is defined to 
be equality over integers and if' is if-then-else. The function mkState turns a 
tuple into a state. 

The function execute matches opcodes to the semantic functions. For exam- 
ple, execute calls the semantic function for ADD as follows, where s is a state: 

execute  (ADD a b)  s = add a b s 

2.2    Concrete simulation 

We can execute the model on particular concrete programs. One of the example 
programs given in Moore's paper multiplies the value in mem[0] by mem[l] using 
repeated addition, leaving the result in mem [2], and clearing mem[0]: 

prog =   [ MOVI 2 0, — 0, mem[2]   <- 0 
JUMPZ 0 5, — 1, if mem[0]=0 goto 5 
ADD 2 1, ~ 2, mem[2]   <- mem[i]  + mem[2] 
SUBI 0 1, ~ 3, mem[0]  <- mem[0]  -1 
JUMP 1, — 4, goto  1 
RET ] — 5, return to caller 

Comments (prefixed by —) on the left describe the meaning of each instruc- 
tion. Beginning with memory containing the values [7,11,3,4,5] (i.e., mem[0] 
containing 7 and mem[l] containing 11), and executing the machine for 31 cy- 
cles, results in the following memory state: [0,11,77,4,5]. Memory location 2 
contains the result of multiplying 7 by 11. 

2.3    Overloading: Type classes 

We now use the type class system of Haskell to make all the operations that 
manipulate data be overloaded on both concrete and symbolic data. 

In the previous concrete simulation, the type of the function subi is2: 

In Haskell, a type expression is preceded by a 



subi  ::  Addr -> Data -> MachState -> MachState 

To simulate symbolic values, we will make it so that the type Data can be inter- 
preted at other types than Int. We cannot allow Data to be any type (i.e., make 
subi polymorphic) because numeric operations are not defined for all types. Al- 
ternatively, we could parameterize subi by numeric and other operations that 
are type-specific to the type of data in memory (i.e., symbolic or concrete). This 
is the approach of Joyce-style representation variables [Joy90], where all the se- 
mantic functions are parameterized by what could become a long list of any 
operations that are type-specific for any opcode. 

Our solution is to take advantage of the overloading of operators provided 
by type classes. A type class groups a set of operations by the type they operate 
over. The typechecker is able to determine which instance of the operation is 
being invoked based on the type of its arguments. 

The existing Haskell type class Num has almost all the operators that we re- 
quire for data values for this example. In Haskell, a type class definition declares 
the name of the class and the operations on members of the class. The Num class 
has the following definition: 

class Num a where 

(+)   : :  a -> a -> a 
(-)   : :  a -> a -> a 
(*)   : :  a -> a -> a 
froml nt   ::   Int -> 

Following the first line in this class definition are operators defined on types 
within this class. Parentheses indicate that the operation is infix. The parameter 
after the name of the class (a) is used to represent a type belonging to this class. 
The type signatures of the operations are described in terms of this type. The 
simple machine only requires the use of "+" and "-". The function fromlnt 
turns integers into values of type a. This capability is very useful when moving 
to the symbolic domain because it means existing uses of constant integers do not 
have to be converted by hand into their representation in the symbolic domain 
- fromlnt is automatically applied to them. 

In Haskell, the type Int is declared to be an instance of the Num class. 
For the JUMPZ opcode, the equality operation on data values is also needed. 

Therefore, we create a new class called Word that inherits all the operations of 
Num and includes the operation ===. 

class Num a => Word a where 
(===)   ::   a -> a -> a 

The use of the operator => in Haskell indicates that the type a must be a 
member of the type class Num and therefore the types in Word inherit all of 
Num's operations. The type Int is an instance of the type Word where the equals 
operator returns true (1) if the two operand integers are equal and false (0) 
otherwise. Boolean values are treated as integers. 

The type of values in memory now must be elements of the type class Word. 
The types MachState and Program are parameterized by the type of the memory 
elements, as in: 



data MachState a = ST  ((String,Loc),   [(String,Loc)],   [a], Bool, Program a) 

Opcodes are also adjusted to take immediate values of types in the Word class 
rather than just integers. For example, the type of the subi instruction becomes: 

subi  ::  Word a => Addr -> a -> MachState a -> MachState a 

The definition of subi does not change. 
Concrete simulation of prog results in the same state. 

2.4    Symbolic simulation of data flow 

Once the model has been set up to accept memory values of types within the 
Word class rather than just integers, we can consider an appropriate symbolic 
domain. Our symbolic domain must include representations of all operations that 
the model performs on integers. The values of this domain represent syntactic 
versions of the expressions performed by the machine. An appropriate symbolic 
domain for this example includes representations for constants (Const), symbols 
(Var), and the results of addition and subtraction operations. Using a recursive 
data type, we describe the values in the symbolic domain as: 

data Symbo = 

Const Int 

I Var String 

I Plus Symbo Symbo 

I Minus Symbo Symbo 

I Times Symbo Symbo 

Plus and Minus will be used to represent the results of addition and sub- 
traction operations on numbers. We include a representation of multiplication 
(Times) because using algebraic laws we can simplify expressions involving ad- 
dition and subtraction to expressions involving multiplication (Section 2.5). 

Next, we create an instance of the Num and Word type classes providing wit- 
nesses showing how the required operations of Num and Word are implemented 
for Symbo. Fig. 1 shows the instance declarations for Symbo that include func- 
tion definitions (using pattern-matching) for these operations. The last case in 
the pattern-matching is the default case. We assume for the moment that the 
operands to the equality operation will only be concrete values. 

After providing these instance declarations, all that is necessary to simulate 
symbolically the program prog is to provide symbolic inputs. To calculate 7*j, 
we begin with memory having the values, 

[7,Var  "j",Var "x",Var  "y",Var  "z"] 

The result of the program after 31 steps is3: 

[O.j.j + j + j + j + j + j + j.y.z] 

This output is pretty printed to remove the "Var" and "Const" prefixes. 



instance Num Symbo where 

Const x + Const y = Const (x + y) 

Const 0 + y     = y 

x + Const 0     = x 

x + y = x 'Plus' y 

Const x - Const y = Const (x - y) 

x - Const 0     = x 

x - y = x 'Minus' y 

Const x * Const y = Const (x * y) 

Const 0 * y     = Const 0 

x * Const 0     = Const 0 

Const 1 * y     = y 

x * Const 1      = x 

x * y = x 'Times' y 

fromlnt        = Const . fromlnt 

instance Word Symbo where 

(Const x) == (Const y) = if (x == y) then (Const 1) else (Const 0) 

Fig. 1. Instance declarations for "Symbo" 

This result shows that the sequence of opcodes in the program performs repeated 
addition resulting in seven additions of 7 being left in memory position 2. 

In this example, we only made one input symbolic. If we had made all of 
memory symbolic, we would not have been able to execute the program because 
the value in memory location 1 is used to determine if a branch is taken. Because 
we have not yet defined equality on symbolic values, checking whether a value 
like Var "i" is 0 would cause a run-time error. We extend our example with 
symbolic branching in Section 2.6. 

Symbolic values in memory are used interchangeably with concrete values 
in memory (e.g., 7) and in the immediate values within the programs (e.g., 0 
in MOVI 2 0). The function fromlnt in the Num class turns concrete values into 
symbolic values making this interchangeability possible. Programs running on 
concrete values and producing concrete output can still be run on the model 
with the more general types. 

2.5    Algebraic simplifications 

The symbolic domain must have the same behavior as the concrete domain. 
For the case of numbers, there are algebraic laws that hold for the concrete 
domain that can be used to simplify the output of symbolic simulation. For 
example, Var x + Var x is equivalent to Const 2 * Var x. These rules can be 
implemented for the symbolic domain by augmenting the instance declaration 



for Symbo with cases that describe the algebraic rules. Two algebraic rules useful 
for the multiplication program are: 

Var x + Var y = if (x == y) then Const 2 * Var x 

else Var x 'Plus' Var y 

((Const x) 'Times' (Var y)) + (Var z) = 

if (y == z) then (Const (x+1)) * (Var y) 

else (Const x 'Times' Var y) 'Plus' Var z 

Using these algebraic simplifications, the result of the multiplication program 
calculating 7* j is [0,j,7 * j,y,z]. 

These algebraic simplification rules perform the same task as rewriting in a 
theorem prover. 

2.6    Symbolic simulation of control flow 

When control values in a program are symbolic, the output of symbolic simula- 
tion captures the multiple execution paths that the program could have followed. 
Memory location 1 is a control value in the program prog, because its value is 
used to determine whether to take a branch or not. To deal with symbolic simu- 
lation of control values, we have to extend our idea of a state to include branches 
representing multiple execution paths. We build this infrastructure on top of the 
model. 

The branching structure will have states at its leaves. The following is a data 
type for capturing trees of states: 

data State f a = 
CondS a (State f a) (State f a) I 

Term (f a) 

The type variable a describes the type of the expression that is used to de- 
cide which branch to follow. In our symbolic simulation, this type variable is 
instantiated to Symbo. The type variable f describes the form of the leaf states. 
For the simple machine, this will be the type MachState. Because MachState 
is parameterized by the type of data in its memory, we use the type expression 
f a, providing the parameter Symbo to MachState. The data constructor CondS 
represents multiple execution paths that are conditional on the first argument 
to CondS. 

To take a step in this symbolic machine, each leaf state must take a step. 
This may result in new branches in the tree. The function step_state is defined 
over leaf states and invokes the function execute described in Section 2.1. Using 
step_state, we can define a function to take steps over our symbolic state: 

step (Term s) -  step_state s 
step (CondS a b c) = CondS a (step b) (step c) 

Next, we need to extend our symbolic domain to include the result of checking 
for equality over symbolic values. We add one new symbolic value: 



data Symbo = 

I Equals Symbo Symbo 

The definition of equality in the instantiation of Symbo as a member of the 
Word type class is now extended to: 

instance Word Symbo where 
(Const x)  ===   (Const y)     =    if   (x==y)   then  (Const  1)   (Const  0) 
a === b =    Equals a b 

Finally, we need to have the ability to create branches in the state data 
structure when conditional jumps are encountered in the program and symbolic 
data determines which branch to take. The operator if' used in the semantics of 
JUMPZ must be able to sometimes return a terminal state and sometimes return a 
branch state. We use a multi-parameter type class to capture the behavior of if. 
A multi-parameter type class allows you to constrain multiple types in a class 
instantiation. In the case of if, we parameterize the type of the first argument 
(the deciding value), separately from the type of the the other arguments. The 
result of the function has the same type as the second and third arguments. 

class Conditional a b «here 
if   ::   a -> b -> b -> b 

For working with concrete states, we need an instantiation that uses the reg- 
ular if-then-else for concrete values. Since we are treating Booleans as numbers, 
it checks if its first argument is 1. 

instance Conditional  Int   (State f Int)  where 
if   a b c = if   (a==l)  then b else  c 

When the first argument is symbolic, we have a different definition of if' 
that returns a branched state if the argument is symbolic. 

instance Conditional Symbo  (State f Symbo)  where 
if   (Const 1) b c = b 
if   (Const 0)  b c = c 
if   a b c = CondS a b c 

Now without having changed our model, we have the necessary ingredients 
to simulate symbolic control values4. For example, if we run the program prog 
for 20 steps, with all symbolic values in memory, calculating i * j produces the 
output found in Fig. 2. In this output, we have included the value of the halt 
flag for each state. If i is 0, then the result in memory location 2 is 0 and the 
program has stopped. If i is 1, the result is j and the program has stopped. The 
last line of the figure is for the case where i > 4, so the result will be at least 
5*j. 

4 The types of the semantic functions change to return a symbolic state but these type 
changes can be inferred by the typechecker. 



CondS (i == 0) 

([i.j.O.y.z] .True) 

CondS ((i - 1) == 0) 

([i - l.j, j,y,z],True) 

CondS ((i - 2) == 0) 

([i - 2, j,2 * j,y,z],True) 

CondS (( i - 3) == 0) 

([i - 3,j,3 * j,y,z],True) 

CondS ((i - 4) == 0) 

(Ci - 4,j,4 * j,y,z],True) 
([i " 5,j,5 * j.y.z].False) 

Fig. 2. Output of prog after 20 steps with inputs "i" and "j" 

3    Symbolic simulation of a superscalar, out-of-order 
microarchitecture 

We are modifying an existing Hawk model for a Pentium II-like microarchitec- 
ture [CLM98] to use the type class facilities of Haskell for symbolic simulation. 
This design is a superscalar, out-of-order, with exceptions, pipelined architec- 
ture. We are now able to simulate symbolic data flow for programs running on 
the model. 

Hawk is a Haskell-based hardware description language for expressing mi- 
croarchitecture designs [CLM98,MCL98]. The value of HaskelPs higher-order 
functions and polymorphism are illustrated in this Hawk model although we do 
not have space to describe them in this paper. 

Hawk models usually process transactions. A transaction captures the state 
of an instruction as it progresses through the pipeline. A transaction contains 
the address of the instruction, its opcode, and the addresses and values of its 
operands. The transaction may also contain a speculative PC. As the transaction 
moves through the pipeline, values for input operands and result operands get 
filled in. The speculative PC is compared to the calculated result of a branch 
instruction to determine if the pipeline needs to be flushed. 

The essential change necessary to use type classes in this design was to modify 
the values in registers and memory to be of a type belonging to the type class Num 
rather than only integers. This modification also affects the type of addresses 
because calculations unite the address and value space. Various Hawk library 
devices that manipulate transactions were changed to the more general type. 

The Symbo data type was used to execute a symbolic program calculating 
x4 on this design. Fig. 3 shows our representation of the symbolic DLX [HP96] 
program. The comments beside each instruction indicate the address where the 
instruction is placed in memory. The output of simulating a Hawk model is a 
stream of transactions describing the instructions that have been executed. Fig. 4 



prog_x_4 = 

[Immlns (ALUImm (Add Signed)) R3 RO (Var "x")),~ 64: R3 <- RO + x 

Immlns (ALUImm (Add Signed)) R4 RO 4), — 65: R4 <- RO + 4 
Immlns (ALUImm (Add Signed)) R6 RO 1, ~ 66: R6 <- RO + 1 

Immlns (ALUImm (Add Signed)) R5 RO 0, -- 67: R5 <- RO + 0 
— loop begins here 

RegReg ALU (S GreaterEqual) Rl R5 R4, — 68: R4 <- Rl >= R5 
Immlns BNEZ RO Rl 32, 

" 
69: if (R1==0) then 

goto (70+32/4=78) 

Nop, — 70: No.op 
RegReg ALU Input1 F2 R6 RO, — 71: F2 <- R6 
RegReg ALU Input1 F3 R3 RO, — 72: F3 <- R3 
RegReg ALU (Mult Signed) F2 F2 F3, — 73: F2 <- F2 * F3 

RegReg ALU Input1 R6 F2 RO, ~ 74: R6 <- F2 
Immlns (ALUImm (Add Signed)) R5 R5 1, -- 75: R5 <- R5 + 1 

Jmp J ((-36)), ~ 76: goto (77-36/4=68) 
— end of loop 

Nop, ~ 77: No.op 
RegReg ALU (Add Signed) Rl RO R6, 

] 

78: Rl <- RO + R6 

Fig. 3. Symbolic DLX program for x4 

shows the output of the symbolic xA program for 48 cycles. The number on the 
left is the cycle that the transaction leaves the pipeline. Because this processor 
is superscalar, multiple instructions may leave the pipeline in one cycle. The 
program counter is after the cycle number on an output line. The values of the 
registers used in computation are given in parentheses. If the instruction is a 
branch, a speculative program counter is included in the transaction. 

We are currently extending the Hawk library to handle symbolic control 
paths as well. The key to making this work is to have trees of transactions 
flowing along the wires instead of just simple transactions. This is similar to 
how the state in the earlier example became trees of states. However, a Hawk 
model is stream-based and therefore, does not have explicit access to its state 
like the earlier example does. Instead of simply having a top-level branching of 
state, the branching of state must be threaded through the entire model, just as 
transactions are. This means that most components will need to understand how 
to handle trees of transactions. We are exploring how to best use a transaction 
type class to define easily a new instance of transactions that are trees. 

Once these modifications to the Hawk library have been made, all future mod- 
els will be able to simulate both concrete and symbolic programs. The symbolic 
domain presented in this paper is sufficient for many microarchitectures. 



1: 
2: 
3: 
4: 256 R3(x) <- R0(0) + x 

260 R4(4) <- R0(0) + 4 
5: 264 R6(l) <- R0(0) + 1 

268 R5(0) <- R0(0) + 0 

6: 272 RKO) <- R5(0) >= R4(4) 
7: 276 PC(280) <- if Rl(O) then PC(280) + 32 else PC(280) 

8: 

(SpecPC(256)) 

16 
17 :  292 F2(x) <- F2(l) * F3(x) 
18 : 296 R6(x) <- F2(x) 

300 R5(l) <- R5(0) + 1 
304 PC(272) <- PC(308) + -36            (SpecPC(256)) 

19 

28 
29 : 292 F2(x * x) <- F2(x) * F3(x) 
30 : 296 R6(x * x) <- F2(x * x) 

300 R5(2) <- R5(l) + 1 
304 PC(272) <- PC(308) + -36            (SpecPC(272)) 
272 RKO) <- R5(2) >= R4(4) 
276 PC (280) <- if RKO) then PC (280) + 32 else PC(280) 

42 
43 :  292 F2(x * x * x * x) <- F2(x * x * x) * F3(x) 
44 :  296 R6(x * x * x * x) <- F2(x * x * x * x) 

300 R5(4) <- R5(3) + 1 
304 PC(272) <- PC(308) + -36             (SpecPC(272)) 
272 RK1) <- R5(4) >= R4(4) 
276 PC(312) <- if Rl(l) then PC(280) + 32 else PC(280) 

(SpecPC(280)) 
45 
46 
47 
48 :  312 Rl(x * x * x * x) <- R0(0) + R6(x * x * x * x) 

Fig. 4. Stream of transactions resulting from execution of x4 program 



4 Performance 

In this section, we consider the performance of our "symbolic simulator". We 
used the Glasgow Haskell Compiler Version 4.02 [Ghc] for running our tests. 
Moore provided timing numbers for doing symbolic simulation of the simple 
machine in the theorem prover ACL2 on a 200 MHz Sun Ultra 2 with 512 
MB [Moo98]. Unfortunately, we did not have an equivalent platform available 
and ran our test cases on a 450 MHz Intel Pentium II with 512 MB memory. 
Based on SPEC CPU95 integer benchmarks, our platform is roughly two and 
half times faster than Moore's [SPE]. 

For concrete simulation, the multiplication program calculating 10 000 *1000 
for 40 007 cycles took 0.53 seconds with ACL2 at best and 0.54 seconds for us. 
Here we are comparing Lisp execution to Haskell execution. On a larger concrete 
test case taking 400 000 cycles for 100 000 * 1000, we achieved approximately 
62 200 instructions per cycle (IPC). 

In ACL2, the multiplication program with symbolic data flow calculating 
1000 * j for 4005 cycles took at best 17 seconds with hints and at worst 55 
seconds (IPCs of 72 and 235 respectively). Running the same symbolic program 
took 0.04 seconds for us. When running a much larger test case of 100 000 * j 
for 400 000 instructions (no branches) we achieved 58 300 IPC. 

The multiplication program with symbolic control flow calculating i * j for 
2000 cycles took 1.55 seconds, which is approximately 1290 IPC. With branching 
symbolic programs, printing time is significant. 

ACL2 must use its rewrite engine for symbolic simulation, whereas our ap- 
proach involves executing a functional program. Therefore, we do not suffer 
a performance penalty for symbolic simulation. Rewriting requires searching a 
database of rewrite rules and potentially following unused simplifications [Moo98]. 

5 Related Work 

The approach described in this paper is closely related to work on Lava [BCSS98], 
another Haskell-based hardware description language. They have focused mainly 
on gate-level descriptions, but Lava has also been used for signal-processing ap- 
plications. Lava has explored using Haskell features, such as monads, to provide 
alternative interpretations of circuit descriptions for simulation, verification, and 
generation of code from the same model. A predominant use of a symbolic circuit 
interpretation in Lava is to produce output for theorem provers. Consequently, 
their symbolic simulation assigns labels to all subterms and produces a sequence 
of assertions relating symbolic inputs to outputs. This is like using pointers to 
build a branching data structure. Because pointers are untyped, this represen- 
tation loses some of the type information of the expression. Also, a symbolic 
interpretation must be applied to all parts of the circuit. Our emphasis has been 
more on building symbolic simulation on top of the simulation provided by the 
execution of a model as a functional program. In our descriptions of micropro- 
cessors, we rely on the standard meaning of function application to connect 



components of circuits. We use type classes extensively to choose between a 
symbolic interpretation or a non-symbolic interpretation of an operation. Both 
interpretations can be used within the same simulation run. To achieve this flex- 
ibility, we build the branching structure into the symbolic domain and use type 
classes to capture the symbolic operations. The branching structure is threaded 
through the model. This threading relies on multi-parameter type classes - a 
recent extension to Haskell. 

Symbols in Lisp can be used for symbolic simulation. For example, to generate 
expressions for input to the Stanford Validity Checker [JDB95], a simple HDL 
based on Common Lisp is used [BD94]. In this paper, we show how this approach 
can be done in a strongly-typed, higher-order, functional programming language. 

Symbolic simulation can be carried out with uninterpreted constants using 
rewriting techniques in a theorem prover (e.g., [Joy89,Win90,Moo98,Gre98]) or 
using more specialized techniques such as symbolic functional evaluation [DJ]. 
In this form of symbolic simulation, the model is executed over constants of 
unknown value but the same type as a concrete value. It does not require any 
changes to the model. However, uninterpreted constants are an element of logic 
and their use requires the model to be expressed in a logic. Simulation of a 
logical specification requires special-purpose infrastructure such as rewriting or 
a means of partial evaluation. Our symbolic domain provides the same effect as 
uninterpreted constants using a general-purpose programming language. 

Type classes provide the infrastructure needed to support the way uninter- 
preted constants have been used in logical models of microprocessors. Taking ad- 
vantage of polymorphism in higher-order logic, Joyce first used "representation 
variables" to bundle operations on data [Joy90]. These operations parameterize 
both a reference machine and a model of the implementation. The verification ef- 
fort is valid for any instantiation of these operations. Having an object-oriented 
flavor, a type class packages the functions of a representation variable in one 
location. It is not necessary to parameterize all components of the model by 
type-specific operations. We provide instantiations of the operations of the type 
class for both concrete and symbolic simulation. 

Graph structures such as BDDs and MDGs represent symbolic formulae. Bi- 
nary decision diagrams (BDDs) [Bry86] are a canonical form for propositional 
logic. Multiway decision diagrams (MDGs) [CZS+94] are a canonical representa- 
tion of formulae in many sorted, first-order logic (including uninterpreted func- 
tions). In both cases, by iterating a next state relation, these representations can 
be used to carry out symbolic simulation. BDDs and MDGs are used in decision 
procedures because of their canonical form. Our form of symbolic simulation for 
higher-order expressions only calculates terms and does not produce a canoni- 
cal form. We have not yet characterized the "decidability" of verification efforts 
involving the symbolic terms we produce. 



6 Limitations 

Our approach is limited to models expressed as functions, although they may be 
either state-based as in Moore's simple example or stream-based as in the Hawk 
Pentium II-like model. 

Compared to carrying out symbolic simulation in a logic, in our approach it 
is necessary to introduce a term structure for the symbolic domain. Our symbols 
differ from uninterpreted constants in logic in that a programming language has 
a built-in assumption that elements of user-defined types are distinct. Creating 
the symbolic term structure requires care because the symbolic domain must 
have the same properties of the concrete domain. Therefore, the usual equal- 
ity operation is only denned for the symbolic domain in special cases such as 
Var x = Var x. In this paper, we do not address the issues of how one ensures 
the symbolic domain has the same properties as the concrete domain. 

Our symbolic simulation cannot determine when multiple symbolic decision 
points conflict and therefore prune impossible execution paths. 

Finally, type classes can make fixing type errors a more difficult process. For 
example, type errors are often masked as missing class instantiations. 

7 Conclusion 

The most important conclusion of this work is that facilities can be found within 
some existing programming languages to carry out symbolic simulation of mi- 
croprocessor models. Using a programming language means symbolic simulation 
is accomplished by simply running a program. The speed of our method com- 
pares well with using rewriting techniques to carry out symbolic simulation. The 
output of symbolic simulation produced by a model written in a programming 
language or executable hardware description language can be used as input to 
verification tools. 

Type classes in Haskell make it possible to simulate interchangeably concrete 
and symbolic values without changing the model. Type classes provide a way 
to exchange domains of values without requiring explicit parameterization. The 
class definition specifies the operations on both the symbolic and concrete do- 
mains. Algebraic manipulations of values in the symbolic domain reduce the size 
of the symbolic terms in the output. 

The symbolic infrastructure is likely to be reusable for future microproces- 
sor models. Thus, the initial investment in setting up the type classes can be 
amortized over the ability to simulate symbolically many models. 

We intend to continue this work by considering how this form of symbolic 
simulation can be used in verification techniques. For example, symbolic trajec- 
tory evaluation (STE) [SB95] is currently being applied at the bit-level using 
BDDs as a symbolic representation. To apply STE at a more abstract level a 
means of symbolic simulation of abstract values, such as the one we have pre- 
sented, is needed. We intend to investigate the use of STE for microarchitecture 
verification leveraging off of this work on symbolic simulation. 



8    Acknowledgments 

For their contributions to this research, we thank Mark Aagaard of Intel; Dick 

Kieburtz, John Launchbury, and John Matthews of OGI; and Tim Leonard, and 
Abdel Mokkedem of Compaq. The authors are supported by Intel, U.S. Air Force 
Material Command (F19628-93-C-0069), NSF (EIA-98005542) and the Natural 
Science and Engineering Research Council of Canada (NSERC). 

References 

[BCSS98] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware design in 
Haskell. In ACM Int. Conf. on Functional Programming, 1998. 

[BD94]     J. R. Burch and D. L. Dill. Automatic verification of pipelined microprocessor 
control. In CAV, volume 818 of LNCS, pages 68-79. Springer-Verlag, 1994. 

[Bry86]    R. E. Bryant.  Graph-based algorithms for Boolean function manipulation. 
IEEE Transactions on Computers, C-35(8):677-691, August 1986. 

[CLM98] B. Cook, J. Launchbury, and J. Matthews. Specifying superscalar micropro- 
cessors in Hawk. In Workshop on Formal Techniques for Hardware, 1998. 

[CZS+94] F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny. Multiway decision 
graphs for automated hardware verification.   Technical Report RC19676, 
IBM, 1994.    Also Formal Methods in Systems Design, 10(1), pages 7-46, 
1997. 

[DJ] N. A. Day and J. J. Joyce.  Symbolic functional evaluation. Submitted for 
publication. 

[Ghc]        Glasgow Haskell compiler. 
http://research.microsoft.com/users/t-simonm/ghc/. 

[Gre98]    D. A. Greve. Symbolic simulation of the JEM1 microprocessor. In FMCAD, 
volume 1522 of LNCS, pages 321-333. Springer, 1998. 

[HP96]     J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative 
Approach. Morgan Kaufmann Publishers, San Francisco, 1996. 

[JDB95]   R. B. Jones, D. L. Dill, and J. R. Burch.   Efficient validity checking for 
processor verification. In ICCAD, 1995. 

[Joy89]     J. Joyce.   Multi-Level Verification of Microprocessor Based Systems.   PhD 
thesis, Cambridge Comp. Lab, 1989. Technical Report 195. 

[Joy90]     J. J. Joyce. Generic specification of digital hardware. In Designing Correct 
Circuits, pages 68-91. Springer-Verlag, 1990. 

[MCL98] J. Matthews, B. Cook, and J. Launchbury. Microprocessor specification in 
Hawk. In International Conference on Computer Languages, 1998. 

[Moo98]   J. Moore.   Symbolic simulation: An ACL2 approach.   In FMCAD, volume 
1522 of LNCS, pages 334-350. Springer, 1998. 

[PH97]     J. Peterson and K. Hammond, editors. Report on the Programming Language 
Haskell. Yale University, Department of Computer Science, RR-1106, 1997. 

[SB95]      C.-J. H. Seger and R. E. Bryant.   Formal verification of partially-ordered 
trajectories. Formal Methods in System Design, 6:147-189, March 1995. 

[SPE]       SPEC CPU95 results. 
http://www.specbench.org/osg/cpu95/results/cpu95.html. 

[Win90]    P. J. Windley. The Formal Verification of Generic Interpreters. PhD thesis, 
University of California, Davis, 1990. 



The Internet As A Medium For 
Software Engineering Experiments 

Alex Kotov 
Oregon Graduate Institute 

20000 NW Walker Road 
Beaverton, OR 97006, USA 

+1 503 690-1121 
E-mail: kotov@cse.ogi.edu 

ABSTRACT 
Empirical software engineering often faces the challenge 
of large variability of results among individual subjects. 
Variability can be reduced by using a larger group of 
subjects, but such group quickly becomes too expensive. 
Another challenge is finding a group of subjects that is 
representative of some relevant population of software 
engineers. This paper explores the potential of using 
the internet as the medium for software engineering ex- 
periments to address the problems of sample size and 
representativeness. 

KEYWORDS 
Empirical software engineering, internet experiments, 
software validation techniques. 

1    INTRODUCTION 
Software engineering experiments provide information 
that helps improve software development process. At 
the same time, experimental findings in software engi- 
neering are sparse. One of the problems in software 
engineering experimentation is high variability between 
results of individuals that prompts for larger samples. 
The cost of experiments increases very rapidly with the 
increase of the number of subjects involved. Finding 
a large inexpensive pool of subjects for software engi- 
neering experiments is not easy. Another problem is 
related to the sample population, the subjects of the 
experiment. The goal of an experiment is to make con- 
clusions about some population that is larger than the 
studied sample (the "target population"). Sample pop- 
ulation in software engineering experiments often con- 
sists of students attending a certain class, usually taught 
by the experimenter. "Captive subjects" recruited from 
a software engineering class usually don't represent any 
reasonable population. The limited number of subjects 
and high variance in individual results might be some 
of the reasons why software engineering experiments of- 

ten cannot detect a statistically significant difference 
between the studied phenomena. 

2    THE OPPORTUNITY 
Wide propagation of the internet in the recent years of- 
fered us a new way to address the problems of sample 
size and representativeness. An experiment can be con- 
ducted via the internet making it unnecessary for the 
subjects to travel to the experiment site. Instead, they 
would simply connect to the experiment server, view 
the materials, and perform the required tasks. The ex- 
periment server can be made available 24 hours a day 
so the subjects could participate on their own sched- 
ule. Internet-based experiment would require the sub- 
jects to have an internet connection and therefore the 
set of subjects in such experiment can not be consid- 
ered representative of the entire population. Since the 
set of individuals that have an internet connection in- 
cludes most of the students, it can be considered more 
representative than a set of "captive subjects" from a 
class. 

Internet experimentation offers other important advan- 
tages over the traditional classroom-based setup. First, 
an internet-based experiment is easy to replicate inter- 
nally or externally. External replication of experiments 
is important to verify and validate the original results. 
To replicate such an experiment, researchers would only 
need to copy the internet-based infrastructure to their 
own server and inform the participants of the server's 
location. Second, internet-based experiments can be 
much easier to study and improve. Even after the the 
experiment itself is complete, the web-based infrastruc- 
ture can be left available for everyone to study and learn 
from. Other researchers could walk through this in- 
frastructure to better understand subjects' experiences 
long after the original experiment had been completed. 
Third, the experiment server can be programmed to 
capture finer details of subjects' work process that often 
escape investigation in "paper-and-pencil" experiments. 

Internet-based experiment can be conducted much 
faster and at lower cost than a traditional classroom 
experiment, eliminate the experimenter bias and ensure 
that all subjects are treated exactly the same. It also 



allows the subjects to remain completely anonymous. 

3    THE PROBLEM 
Before internet-based experiments become a standard 
tool of empirical software engineering, research is re- 
quired to demonstrate that such experiments can pro- 
duce valid results. Internet-based experiment setup re- 
moves some of the threats to validity of an experiment 
such as experimenter bias and peer pressure, but it can 
also introduce new ones. Some of the potential threats 
are: Control: The degree of experimenter's control over 
subjects on the internet is much less than in a classroom 
experiment, and violation of the rules of the study by 
subjects would be hard to detect. Commitment: In an 
internet experiment subjects may feel detached and less 
committed to the study than in a classroom experiment. 
Retention: With the amount and diversity of informa- 
tion available on the internet, subjects will be tempted 
to leave the experiment site and "surf" somewhere else. 
Local conditions: Subjects may participate in an inter- 
net experiment from a location that does not allow them 
to concentrate. Technical: They can experience prob- 
lems with their computers or internet connections. 

There are other factors that can potentially affect the 
validity of an internet-based experiment. With a diverse 
participant base, we can expect most of these factors 
to be randomly distributed so that they will introduce 
"noise", instead of a bias, into the experimental results. 
A large number of participants would allow us to collect 
enough data to filter out the "noise". 

4    METHODOLOGY 
At the this time we don't have a good understanding 
of all factors influencing the results of "internet" par- 
ticipants. To overcome this problem, we can aggregate 
these factors into a single "internet factor" and start by 
studying how this factor affects the results of internet- 
based experiments. We can assess the internet factor in 
two ways. We can quantify it by investigating its effect 
on the experimental results. To do this, we will design 
a study that includes the internet factor as an indepen- 
dent variable. We can also try to better understand this 
factor qualitatively by identifying its major parts. 

Quantitative Analysis 
We will start the quantitative analysis of the internet 
factor by designing a study that includes this factor as 
an independent variable. The study will use two groups 
of subjects. One group will be recruited locally among 
students of computer science classes and computer pro- 
fessionals (the "local" group). The other group will be 
recruited on the internet using postings in Usenet news- 
groups and submissions to WWW search engines (the 
"internet" group). Both groups will perform the same 
set of tasks using the same internet-based infrastruc- 
ture.   The subjects from the local group will perform 

the tasks using computer terminals in the experiment 
lab. The subjects from the internet group will perform 
the same tasks remotely without making the trip to the 
experiment site. Subjects' task will be to apply different 
validation techniques to a set of small programs. The 
techniques selected are "functional testing" (validation 
without access to source code) and "structural testing" 
(validation with access to source code). The validation 
technique will become the second independent variable. 
The set of programs was created by Kamsties and Lott 
[1] and later used in a replication by Wood et al. [2]. 

The difference in performance between local and inter- 
net subjects using the same validation technique will 
allow us to quantify the internet factor. It is possible 
that the internet factor will introduce a bias, shifting the 
performance of the internet group up or down for both 
techniques. It can also change the effect size. Analysis 
of variance will be used to determine the effect of the 
internet factor and its interaction with different testing 
techniques. 

Qualitative Analysis 
To perform qualitative analysis of the internet factor 
we can observe the behavior of subjects from local and 
internet groups by studying the information recorded 
by the experiment server. It is possible that subjects 
from the internet group will be more impatient, less at- 
tentive, and less likely to read instructions. They may 
jump from page to page more quickly and make more 
mistakes. Another way to collect qualitative informa- 
tion is to ask all subjects to fill out a questionnaire at 
the end of the study. The questionnaire will ask about 
subject's physical conditions, connection speed, possible 
interruptions, or other factors that may have affected 
their performance, and offer a space to provide feed- 
back. 

5    CONCLUSION 
The internet presents an inviting opportunity to con- 
duct "distributed" experiments that may address some 
of the most common problems of empirical software en- 
gineering: sample size and representativeness. However, 
research is required to demonstrate feasibility and valid- 
ity of such experiments by studying, both quantitatively 
and qualitatively, the factors that affect their results. 

REFERENCES 

[1] E. Kamsties and C. Lott. An empirical evaluation 
of three defect-detection techniques. In Proc. ESEC 
'95, LNCS Nr. 989, p. 362-383. 

[2] M. Wood et al. Comparing and combining software 
defect detection techniques: A replicated empirical 
study. In Proc. ESEC '96, LNCS Nr. 1301, p. 262- 
277. 



Top-level Refinement in Processor Verification 

Sava Krstic, Byron Cook, John Launchbury, and John Matthews 

Oregon Graduate Institute 
{krstic,  byron,  jl,  johnm}Qcse.ogi.edu 

Abstract. We provide a framework for the specification and verifica- 
tion of high-performance processors. As an example, we give a high-level 
specification and correctness proof for a processor that uses speculation, 
register renaming, superscalar out-of-order execution, and resolution of 
memory dependencies. The specifications of its three concurrently oper- 
ating units are very general and can be refined independently, so that 
our proof covers a whole family of microarchitectures. Abstract treat- 
ment of data, representation of on-the-fly instructions as transactions, 
and a history table containing the full information of a processor's run 
are the main features of the proof. 

1    Introduction 

A variety of formal verification tools are now in use in various phases of hardware 
design; [2, 8, 17] are but a few notable examples. At the microarchitectural level, 
however, the real use of verification is limited, mostly due to the immaturity 
of the available techniques. Indeed, proving the correctness of a combination 
of aggressive strategies to resolve inter-instruction dependencies is extremely 
difficult. Still, it is an important verification aspect because microarchitectural 
defects can impact a large fraction of the design and so are hard to fix. Engineers 
close to current processor design teams inform us that designers purposefully 
forgo promising optimizations because they cannot guarantee the optimizations 
preserve correctness. 

Following the top-down approach, we address the question of specifying and 
verifying processors at a high level. On a worked out example, we show how to 
abstract the specification as much as possible in order to clearly and concisely 
specify a complex microarchitecture with the following package of features: spec- 
ulation, register renaming, superscalar out-of-order execution with in-order re- 
tirement, and resolution of memory dependencies. We present only the essentials 
of the microarchitecture, just enough to make the correctness proof possible. The 
lower-level details are left to further refinement. 

Our example is based on an executable processor model expressed using 
Hawk, a specification language with stream transformer semantics [7, 15]. This 
example microarchitecture is close to Intel's PentiumPro [10] and AMD's K6 [20]. 
It is partitioned into three major units for which we provide independent ax- 
iomatic specifications. We show that the visible output computed by this mi- 
croarchitecture is equivalent to that of a simple reference machine implementing 



the instruction set architecture. This approach exhibits a very desirable form 
of modularity where the three units can be independently refined further with- 
out affecting global correctness. Moreover, since the units are to a large extent 
underspecified, our proof covers a whole family of microarchitectures that can 
significantly vary in implementation details. 

To write the specifications and organize the proof, we use a small number 
of concepts and structures of a general nature. For example, our correctness 
criterion can be used for any model with in-order retirement. Next, transactions 
(a formalized notion of partially computed instructions) seem to be just the 
right microarchitectural abstraction that provides uniformity in the description 
of the data path. Transactions come with a natural partial order (progress in 
computation of an instruction) that enhances their expressiveness and can be 
effectively used in reasoning. The proof itself revolves around a history table 
which contains all crucial information about a single run of a processor. 

After a brief discussion of related work, the rest of the paper is organized by 
sections, as follows: we specify a reference machine, introduce transactions and 
(informally) our processor model, describe the correctness criterion, explain the 
history table and the structure of the proof, and give formal specifications of the 
three processor components. The full definition of the history table and a proof 
of the correctness theorem are relegated to the Appendix. 

2    Related Work 

The complexity of verified processor models described in the literature varies, 
largely in connection with the level of proof automation. Highly automated meth- 
ods show a promising trend of consistent increase of applicability, including im- 
pressive recent proofs of out-of-order execution [5, 16]. Still, the models verified 
by these methods are rather limited. This paper belongs to the other end of the 
spectrum: our processor model is one of the most complex, but at the price of 
having been specified in a rather unconstraned mathematical style, and verified 
by a pencil-and-paper proof. The same can be said of the work of Arvind and 
Shen [4], whose appealing processor model is defined as a term-rewriting sys- 
tem. While our specifications allow refinement in the most obvious sense, it is 
not clear how the correctness result of [4] that relies on being able to apply the 
rewrite rules in any order would translate to a lower-level implementation that 
lacks that property. 

With Pnueli and Arons [18] we share the insistence on maximal abstraction 
and modularity stemming from specifying the processor as a simple composition 
of concurrent subsystems. There is also some similarity in the correctness crite- 
rion, based on the idea of refinement. Their model, however, assumes a restricted 
instruction set, without branches and memory instructions. 

The correctness criterion adopted in most processor verification papers is the 
"commutative diagram" condition of Burch and Dill [6], or some version thereof 
(cf. [4, 12, 14, 19]). Along with [18], we avoid dealing with explicit synchroniza- 
tion and abstraction functions that match the states of the verified processor 



with the states of the reference machine. Instead, our criterion requires that the 
two sequences of retired instructions arising from running the same program on 
the two machines are equivalent. 

Dealing with memory instructions combined with out-of-order execution has 
only recently come into the scope of processor verification efforts; cf. [4, 12, 19]. 
Our execution unit allows multiple refinements with arbitrarily sophisticated 
treatment of memory operations (load bypassing, for example). 

A remarkably detailed model, including a treatment of exceptions, is verified 
by Sawada and Hunt [19] using a methodology which has many similarities to our 
work. The key structure they use, the Microarchitectural Execution Trace Table, 
contains entries that are much like our transactions. This table represents the 
current computational state of the processor like a row of our history table does. 
A global invariant relates the table with the corresponding microarchitectural 
state. Since it references most of the state elements, this invariant presents a 
difficult proof obligation, which unfortunately is only briefly discussed in [19]. 

Our paper promotes hierarchical verification by providing a very general 
and non-deterministic model and a straightforward reduction to verification of 
components. At this level, the assume-guarantee style takes a simple form: all 
that the components assume of the environment are type-correct values on their 
input wires; cf. [11]. 

3    Standard machine (ISA) 

Our reference model is an abstract standard machine, defined as a state machine 
whose states consist of values for the program counter, register file and memory. 
Most of the common instruction set architectures are instances of it when we 
ignore the treatment of external exceptions. 

Definition 1. Given a state (pc,rf,mem), the standard machine (executing a 
fixed program pgmj makes a transition to the state (pc',rf',mem') defined by the 
following set of equalities. 

I = pgm(pc) 

(opcode, rSources, rDest) = decode(Z) 

rOps = rf (rSources) 

(mSource,mDest) = getAddr(opcode,rOps) 

mOp = mem(mSource) 

(pc',rRes,mRes) = compute(pc, opcode, r0ps,m0p) 

, _ J rf [rDest i-> rRes]    if rDest G Reg 
~~ \ rf if rDest = () 

mem' = < 
mem[mDest i-> mRes]    i/mDest £ Addr 
mem i/mDest = () 

The function decode extracts the opcode, source registers and the destina- 
tion register from an instruction. The function get Addr computes the addresses 



mSource for loads and mDest for stores. Finally, the results of compute are the 
new value for the program counter and the values to be written back to the 
register file or memory. 

The standard machine is totally data-insensitive. It uses abstract basic types 
IAddr, Instr, Opcode, Value, Reg and Addr, and the rest is typed as follows: 

pc: IAddr, pgm: IAddr ->■Instr, rf: Reg ->• Value, mem: Addr-» Value 
decode : Instr —> Opcode, RegSeq, Reg" 

getAddr : Opcode, ValueSeq ->• Addr', Addr" 
compute : IAddr, Opcode, ValueSeq, Value' -¥ IAddr, Value', Value' 

where we follow the convention to write product types using commas and func- 
tion types using arrows. The notation Type' is a shorthand for the sum type 
Type + {()}, where the element () indicates a value that does not need compu- 
tation. For example, the first component of the result of getAddr is () unless the 
first argument is the opcode of a load instruction. Note that our definition allows 
a single instruction to have the combined behavior of a branch, alu-instruction, 
load and store, if desired. Particular instructions may of course choose to only 
implement a subset of this functionality. 

4    An example processor 

When reasoning about the execution process of complex processors one nor- 
mally thinks of instructions as entities that come into being at a certain cycle 
and evolve thereafter. Transactions formalize this notion of partially computed 
instructions. Informally, a transaction is a package of information which (di- 
rectly or indirectly) contains the identity of the unique (static) instruction it is 
associated with plus various data extracted from the processor's state that are 
relevant for the execution of that instruction. 

Guided by the standard machine specification, we define a standard transac- 
tion as a record with the following eleven fields: 

instr       : Instr rDest : Reg' 
opcode   : Opcode mSource, mDest : Addr' 
rSources: RegSeq npc : IAddr 
rOps       : ValueSeq mOp, rRes, mRes : Value' 

We assume that all our basic types contain a value _L, indicating an uncom- 
puted value. We will also use the notation rOpj(T) for the ith member of the 
sequence rOps(T). The functions decode, getAddr and compute treat ± as an 
argument in a lazy fashion: a component of their result is J_ only if some crucial 
arguments needed for computation of that result are ±. 

A natural idea, introduced in [3] and paradigmatic for the Hawk specification 
language [15], is to use transactions as a unifying concept in microarchitectural 
specifications. Transactions are passed along wires and manipulated by processor 



components. In addition to the above standard fields, any specific microarchitec- 
ture adds fields appropriate for the description of its execution algorithm. Our 
example processor adds five new fields: the instruction address addr, the spec- 
ulative next program counter spc, the name (alias) name, the register providers 
rProvs and the most recent store mrSt: 

addr, spc : IAddr 
name      : Name 

rProvs : NameOptSeq 
mrSt   : NameOpt 

The fields rProvs and mrSt will record dependencies among instructions. Here 
NameOpt = Nam" + {NONE} is the type of an optional name field, where 
NONE serves to indicate the lack of dependency. 

rpc 

A  dequeued 

FETCH 
UNIT 

ORDERING 
UNIT 

computed EXECUTION 
UNIT prepared 

fetched 

flush rf 

xpc mem 
writemem mature executing  ► 

pc young lingering 

pc,xpc : IAddr 
rf : Reg —*• Value 
mature,young : TransSeq 
mem : Addr —*• Value 

rpc : IAddr' 
fetched, dequeued, prepared : TransSeq 
computed : TransSet 
flush, writemem : Bool 

executing, lingering : TransSet 

Fig. 1. Top-level specification with the types of wires (right) and state components 
(left). Thick wires represent transaction sets or sequences. At each cycle, units update 
their state and output wires depending on the values on their input wires and state 
elements at the previous cycle. 

The processor consists of three major units and seven wires as depicted in 
Fig. 1. The fetch unit provides multiple instructions at each cycle. This unit 
outputs along the fetched wire transactions with filled in fields instr, addr and 
spc. The fetching of instructions begins at the address pc if the current value 
of rpc (requested program counter) is (); otherwise rpc is used. The fetching 
proceeds by unconstrained speculation. 

The ordering unit maintains the sequential programming model of the ISA by 
using a queue made by concatenating the sequences mature and young (Fig. 2). It 
takes a prefix of the sequence fetched to form a transaction sequence enqueued 
to be added to the back of the queue. The transactions of fetched that do not 



belong to the chosen prefix are discarded. Each transaction added to the queue 
gets its name field filled in, unique in the queue. The mature part of the queue 
corresponds to transactions already sent to the execution unit. Transactions 
in prepared are taken from the beginning of the young part of the queue and 
possibly also from enqueued; they all have their rOps, rProvs and mrSt fields filled 
in. The elements of rOps obtain values from rf when there is no dependency 
on previous transactions; if there are dependencies, they are recorded in the 
elements of rProvs, which contain the names of the transactions that will provide 
the appropriate values when computed. The field mrSt contains the name of 
the last preceding store in the queue; it is used only by loads and stores for 
future resolution of dependencies among them. The mature part of the queue is 
updated by transactions arriving along the computed wire, then a prefix of the 
resulting sequence consisting entirely of complete transactions is retired, that is, 
sent along the dequeued wire while updating rf. When a retired transaction is 
a mispredicting branch, then the queue is emptied, the Boolean wire flush is 
asserted and rpc set equal to the address of the last retired transaction. The 
wire rpc is also given a non-trivial value when not all fetched transactions are 
enqueued. In this case the rpc is set to the spc of the last enqueued transaction. 

fetched     | [    fetched 

mature       ||       young       || enqueued I |       mature       ||      young        || enqueued 

dequeued II       mature'       II     young'      | | dequeued  || mature' II young' 

|  prepared    | |     prepared       | 

Fig. 2. Two possible scenarios for the relationship between transaction sequences in- 
volved in a transition of the ordering unit. The inputs are fetched, mature and young, 
and the outputs are dequeued, prepared, mature' and young'. The sequences are 
aligned so that if two transactions are on the same vertical line, then the higher one is 
less than or equal to the lower (in the progress ordering defined below). 

The execution unit is an out-of-order component that computes the results 
rRes and mRes of transactions contained within it and determines which of these 
transactions are mispredicting (by computing npc for each and comparing it with 
spc). It may also execute a memory store if the value on the wire writemem indi- 
cates that it is right time to do so. A number of completed transactions are sent 
out along the computed wire, while placing them in the set lingering, where 
each of them will remain intact until the moment when an equally named trans- 
action comes along the prepared wire and takes its place. When a transaction 
is sent to computed (or sooner), the values in its result fields are forwarded to 
all other transactions in executing. There are no requirements on the number 
of transactions executed at each cycle and the only requirement on the order of 
their execution is that the data-flow order is respected. 



5    Correctness criterion 

One can slightly extend the definition of the standard machine so that at each 
cycle it outputs a complete transaction (corresponding to the instruction com- 
pleted at that cycle). A run of the standard machine then defines a sequence of 
"retired" transactions from which the corresponding sequence of states of the 
standard machine can easily be reconstructed. 

A transition of a complex processor cannot, in general, be associated with a 
unique transaction, but with a sequence, possibly empty, of transactions retired 
on that transition. So, suppose P is a processor and denote by pn the sequence 
of transactions retired by P on its nth cycle. Concatenating these sequences we 
obtain p^ = p\pi ■ ■ ■. Replacing every transaction in p^ with the corresponding 
standard transaction (which amounts to ignoring its "non-standard" fields), we 
obtain a sequence of standard transactions ps^, which, if P does implement the 
standard machine, should be identical to the appropriate execution sequence of 
the standard machine. This gives us the following correctness criterion. 

Definition 2. A processor P is correct with respect to the standard machine if 
for any given program pgm and a state o~o of the standard machine, there exists 
an initial state of P such that the execution of pgm on P produces a sequence of 
retired transactions poo with the associated sequence psJ£ equal to the execution 
sequence defined by the program pgm and the initial state 00. 

The notion of the execution sequence is made precise below, after a brief 
elaboration of the type of transactions. 

5.1     The progress ordering of transactions 

We define the progress ordering -< on the set of transactions so that T\ ■< Ti 
will mean that T-i is a computationally more advanced ("closer to retirement") 
version of Xi. The relation < is the product of 16 partial orders (all denoted 
<)—one for each record component. These component orders are defined as 
follows. For each basic type (including Name), we make _L the smallest element 
and all other elements, including (), incomparable. In NameOpt, NONE is the 
largest element. Finally, two sequences are comparable if and only if they have 
the same length and the elements of one of them are all less than or equal to the 
corresponding elements of the other. 

The partial order just introduced allows us to define the notion of intrinsic 
consistency of transactions. Intuitively, a transaction is consistent if the contents 
of its fields do not contradict any of the equations occurring in the definition 
of the standard machine. Of these equations, the ones that do not involve the 
components of the machine state (program counter, register file and memory) 
give rise to consistency criteria: 

(opcode(T),rSources(r),rDest(T)) < decode(instr(T)) 

(mSource(T),mDest(T)) ^ getAddr(opcode(T),rOps(T)) 



(npc(T), rRes(T), mRes(T)) ^ compute(addr(T), opcode(T), instr(T), rOps(r), mOp(T)) 

By definition, a transaction is consistent if its fields satisfy these inequalities. We 
define Trans to be the set of all consistent transactions. Note that consistency 
of a transaction depends entirely on the contents of its "standard" fields and 
that all strictly increasing chains in the poset (Trans, ■<) are of finite length. 

Maximal transactions with respect to the ordering < will be called complete; 
a transaction is complete if none of its fields is ±, and mrSt and all component 
fields of rProvs are NONE. 

5.2    Execution sequences 

For every transition of the standard machine there is an associated complete 
standard transaction. To define it, just use the left-hand sides of the equations 
in Definition 1. Thus, together with every run of the standard machine, one 
can consider the corresponding transaction sequence (Xi,T2,...), where T, cor- 
responds to the ith transition. Characterizing properties of such sequences are 
collected in Definition 3 below. 

If T is a (finite or infinite) sequence of transactions or standard transactions 
and T a transaction in r, we define the ith register provider of T to be the 
transaction U of T which precedes T and has the property that rSourcej(T) = 
rDest(U), while rSourcej(T) ^ rDest(V) for all transactions V between U and T. 
Similarly, we define U to be the store provider of T if T is a load and U is the 
last store among the transactions that precede T in r and satisfy mSource(T) = 
mDest(C7). 

Definition 3. An infinite sequence r = (Ti,T2,...) is an execution sequence 
corresponding to the program pgm and the initial state (pcinit,rfmj<,memj„it) if 
every Tm is a complete transaction and 

instr(Tm)=(PgmipC^)      „    %m = l v m'     \pgm(npc(Tm_1))    ifm>0 

O   (T \ — j rRes(Tk) ifTk is the ith register provider for Tmin r 
*    m       \ rfi„i<(rSourcei(Trn))    if Tm does not have an ith provider in r 

n IT \ — / mRes(3TÜ ifTk is the store provider for Tm in r 
[ memj„j((mSource(TTO))    if Tm does not have a store provider in r 

6    History Table (Structuring the proof) 

Reasoning about the execution of processors can be conveniently organized 
around a history table. Two simple observations are behind its definition. First, 
if Ii, Ii,... is the sequence of instructions considered by the processor during 
a run, then each transaction T found anywhere in the processor at any time is 
associated with a unique fetched instruction If, we say that j is the ordinal of T. 
The second observation is that there are only finitely many essentially different 



execution patterns for an instruction and that one can define a finite transition 
diagram describing those patterns. Each node of this transaction flow diagram 
r corresponds to a distinguished "pipeline stage" and will be called a status. 

A history table is defined for every run of the processor. At the nth row 
and the ith column of the table one finds a pair Hl

n = (T,X), where T is the 
transaction that represents the state of computation of I; at the nth cycle and 
X is the status of that computation. Formally, E{

n is defined in terms of the set 
of transactions with ordinal i which are present in the processor at the nth cycle, 
and the values of "control" variables at that cycle; normally, T is the maximal of 
those transactions and the status X corresponds to the set of locations in which 
they are found. 

(fetched )-»-( young)—»-( prepared)—»-( executing)—*-(computed (dequeued) 

Fig. 3. Transaction flow diagram r. The transitions to squashed occur only when 
flush = TRUE. 

For our example processor, r is given in Fig. 3. The top row represents 
the execution patterns of successfully completed instructions. Looping at young 
means waiting to be sent to the execution unit; the loops at executing and 
ripe have similar meaning. The status ripe corresponds to the set of complete 
transactions contained in mature. The final statuses ignored and squashed are 
for transactions aborted because of the overflow in the ordering unit (inability 
to enqueue all fetched transactions) and misprediction, respectively. 

The rows of the history table are finite; the length of the nth row is equal 
to the total number of fetched instructions in the first n cycles. All columns 
stabilize: for each i, we have H^+1 = H\ for all large n. This follows since both 
Trans and f are posets in which strictly increasing chains are finite. We define 
the limit row Hoo as the sequence of the limit values of columns: H^ = limn Hl

n. 
For any n < oo, denote by rn the sequence of transactions occurring in 

the nth row Hn oi H. Let also r£ denote the sequence consisting of only those 
transactions occuring in Hn whose corresponding status component is dequeued. 
The correctness of the processor can then be restated as follows. 

Theorem, T^, is an execution sequence. 

In view of Definition 3, this presents us with four proof obligations. 



I      I    fetched 

KH    active 

ES&l   dequeued 

squashed 

ignored 

Fig. 4. Seven consecutive rows in the middle of a history table. The second depicts a 
cycle when only part of the fetched transactions is enqueued. The first misprediction is 
seen in the fourth row; transactions fetched at this cycle are ignored at the next, when 
also, due to the misprediction, the fetching unit was unable to output. ("Active" stands 
for statuses that are neither initial nor final and reflects the queue in the ordering unit.) 

Proposition 1.  The sequence T£, is infinite. 

Proposition 2. IfU andT are two consecutive elements ofr^, then npc({7) 
addr(T). Also, the value or the addr field of the first transaction of r^, id pc. init' 

Proposition 3. Let T be a transaction in T^,. IfU is the rth register provider 
ofT in T^,, then rOpr(T) = rRes(U), and ifT does not have an rth provider in 
r£,, then rSourcesr(T) = rf,„jt(rSourcej.(T)). 

Proposition 4. Let T be a transaction in r^,. If U is the store provider of T 
in T£,, then mOp(T) = mRes([7), and ifT does not have a store provider in T®,, 

then mOp(T) = mem;njf(mSource(T)). 

The proof of Proposition 1 uses the liveness conditions of components. The 
major results one needs to establish are the infinity of the sequences of fetched 
and enqueued transactions, and the absence of livelock, expressed as the state- 
ment that all locations in H^ are final. Proving the remaining three propositions 
involves a rather straightforward but tedious chasing around the history table. 

7    Formal specification 

Staying close to the Hawk specification style, we model processors and their 
components as state machines, which use sets of input wires, output wires, and 
states, each wire and each piece of state having a prescribed type. The machine 
is then defined by a function whose arguments are the values for input wires 
and states, and whose results are values for the output wires and states in the 
next clock cycle. Consequently, the machine acts as a signal transformer: for any 
given signals (infinite sequences) of inputs and initial values of states, it produces 
uniquely determined signals of outputs. 

An axiomatic specification of a state machine could consist of a list of its 
input, output and state variables, an initial condition, an invariance condition, 
and a liveness condition. Without making these notions precise, we note that an 

10 



invariant is a prepositional formula written in terms of input variables, output 
variables, state variables and primed state variables, and a liveness condition is 
a property of signals expressible by a suitable formula in temporal logic. 

Again without going into technicalities, state machines can be composed by 
identifying each output wire of the constituent machines with some (zero or 
more) input wires. At the level of signals, which is how it is done in Hawk, 
composition amounts to writing a system of equations, each corresponding to a 
component machine. 

The input, output and state variables of the three components of our proces- 
sor can be read off from Fig. 1, which also tells how the wires are joined to give a 
specification of the processor as a composition of its components. The formulas 
for specifications of components are given below, after introducing notational 
conventions. 

The values pgm, pcinft, rf *„« and memini< are constants. 
We restrict the type TransSeq to "uniquely named" sequences: if two trans- 

actions in a sequence have names x and y, none of which is J_, then x ^ y. 
The concatenation of sequences a and ß is denoted a %ß. A partial order on 
the set of transaction sequences is defined by a ^ ß if and only if \a\ = \ß\ and 
a[i] ■< ß[i] for every i. A transaction is mispredicting if its spc and npc fields are 
not equal, and none is equal to ±. A transaction is decoded if none of its fields 
opcode, rSources, rDest contains ±. A transaction is independent if its mrSt and 
and rOps fields are maximal (the first is NONE and the second does not contain 
±). A transaction T depends on another transaction U if rProvj(T) = name(£/) 
or mrSt(T) = name(t/). If T is a transaction in a transaction sequence a, then 
the most recent store of T in a is the last store in a that precedes T. Finally, 
if A is a transaction set and T is a transaction, then the store chain of T in A 
is the maximal sequence (Sk,.-.,Si) with the properties mrSt(T) = name(5i) 
and mrSt(Si) = name(Sj+i) for 1 < i < k. 

Transaction sets have the property that different elements of a set have dis- 
tinct names; we use the type TransSet = (Name- {J.}) -»■ Trans' to represent 
such sets. For A and B in TransSet, we denote by AliB the union of A and 
B with A having the higher priority; that is, if A and B both have a transac- 
tion named x, then the transaction named x of A U B is that of A! (This union 
operation is associative, but not commutative.) The notation A ■< B means by 
definition that A{x) < B(x) for every x G Name. Note that there is a canonical 
map TransSeq -» TransSet, so every transaction sequence can be regarded as 
a transaction set. 

For rf G Reg -» Value, mem G Addr -» Value, v G Value, r G Reg and 
a G Addr, the values of the updated register files and memories are denoted 
by rf [r *-* V] and mem[a i-> v]. Note the role of -L in updating functions: if 
rf' = rf[± •-> v], then rf'(r) = i. for every r, but if rf' = rf[r 1-4 _L] then 
rf'(s) = rf (s) for every s ^ r. Updating of a register file and memory by a 
transaction is defined by 

/ rf [rDest(T) y-+ rRes(T)]    if rDest(T) G Reg 
rf ' J ~ \ rf if rDest(T) = () 

11 



„      f mem[mDest(T) i-> mRes(T)]    if mDest(T) £ Addr 
mem • 1 = < L -     -       ■--■ 

I1 mem if mDest(T) = () 

The results rf • r and mem ■ T of updating rf and mem by a finite transaction 
sequence r are then defined in a straightforward manner. 

FETCHING UNIT 

Let pc-rpc = pc if rpc = (); otherwise pc-rpc = rpc. 

Fetch-Init.  The initial values o/pc and fetched are pcinit and () respectively. 

Fetch-Inv 1. instr(T) = pgm(addr(T)), for every transaction T occurring in 
fetched. 

Fetch-Inv 2 (Speculation), //fetched = {Tx,.. .,Tk), then addr(Tj) = pc-rpc; 

and addr(Tj+i) = spc(Tj) for every i € {l,...,k — 1}. 

Fetch-Inv 3 (Next PC), pc' = spc(T) ifT is the last transaction off etched, 
and pc' = pc-rpc if fetched = (). 

Fetch-Inv 4 (Empty fields). A field of a transaction in fetched has a value 
different from ± if and only if that field is instr, spc or addr. 

Fetch-Liv.   The formula rpc ^ () V fetched ^ () is true infinitely often. 

ORDERING UNIT 

Denote queue = mature^young. 

Ord-Init. The initial values o/xpc, rf, queue, flush, prepared and rpc are 
pcinit, zfinit, (), FALSE, () and () respectively. 

Ord-Inv 1 (Naming). All transactions in queue have distinct names. 

Ord-Inv 2 (Queue). Let mature* be the sequence obtained from mature by 
replacing every transaction in it with an equally named transaction of computed, 
if it exists. If flush = TRUE then queue' = prepared = () and dequeued is a 
prefix of mature*. If flush = FALSE, then there exists a prefix enqueued of 
fetched such that 

young ^enqueued ■< prepared ^young', 

mature* ^prepared = dequeued ^mature'. 

Ord-Inv 3 (Enqueueing). IfT is the first transaction of enqueued, then addr(T) 
xpc. Finally, if queue = () and xpc = addr(T), where T is the first transaction 
of fetched, then enqueued ^ (). 

Ord-Inv 4 (Preparation). Let T be a transaction in prepared. Then 

12 



1. T is decoded, rRes(T) = ±, and T € mature'. 
2. (rOpi(T),rProvi(T)) = (±,name(J7)) ifU is theith register provider ofT in 

queue', and (rOp^T), rProv^T)) = (rf'(rSourcei(T)),NONE) if T does not 
have the ith register provider in queue'. 

3. mrSt(T) = name(S') if S is the most recent store for T in queue', and 
mrSt(T) = NONE if this most recent store does not exist. The value of 
mOp(T) is ± or (), depending on whether T is a load or not. 

Ord-Inv 5 (Dequeueing). All transactions of dequeued are complete and none 
of them, except possibly the last one, is mispredicting. 

Ord-Inv 6 (Register File), rf' = rf • dequeued. 

Ord-Inv 7 (Flush), flush = TRUE if and only if the last transaction in dequeued 
is mispredicting. 

Ord-Inv 8 (Enabling a memory write), writemem = TRUE if and only if 
the first transaction of queue' is an incomplete store. 

Ord-Inv 9 (Requested PC). 

{npc(Z?)     if flush = TRUE 
addr(E)    if flush = FALSE and |enqueued| < |fetched|   , 
() otherwise 

where D is the last transaction of dequeued and E = fetched(|enqueued| + 1). 

Ord-Inv 10 (Expected PC). 

(rpc i/rpc^() 
spc(T)    if rpc = () and enqueued ^ ()   , 
xpc otherwise 

where T is the last transaction of enqueued. 

Ord-Liv. If the first transaction of queue is complete, then eventually dequeued ^ 
(). //mature = () and young ^ (), then eventually prepared ^ (). 

EXECUTION UNIT 

Exec-Init.  The initial value of mem is mem;nit, and 0 is the initial value of 
executing, lingering and computed. 

Exec-Inv 1 (Flushing), //flush = TRUE, then executing7 = lingering' = 
0 and mem' = mem. 

Exec-Inv 2 (Contents).  The sets executing and lingering are disjoint. If 
flush = FALSE then 

executingU preparedU lingering < executing' U lingering'.       (1) 

13 



If T is an element of the left-hand side of (1) and T" is the corresponding 
element of the right-hand side, we will say that T" is the descendant of T. Note 
that the only transactions of executing U lingering without a descendant are 
members of lingering whose name occurs in a transaction of prepared. 

Exec-Inv 3 (Lingering). Assume flush = FALSE. Then all transactions in 
lingering are complete and no transaction in executing depends on any trans- 
actions of lingering. Also, a transaction belongs to lingering7 if and only if 
it either belongs to computed, or is a descendant of a transaction in lingering. 

If L is a load in executing U prepared and (j) is the store chain of L in this 
set, then 

mOp(L) ^ (mem • 0)(mSource(Z,)) (LC) 

is a condition that should be satisfied by the execution unit. Note that the value 
on the right-hand side is 1 if mDest(S) = ± for some S in cf>. If mDest(S) ^ J. for 
all S in (f>, then the value on the right-hand side is either (1) mRes(5), where S is 
the last transaction in 0 with mDest(S) - mSource(L), or (2) mem(mSource(Z/)), 
if no such 5 exists. 

Exec-Inv 4 (Load Correctness). // L' is the descendant of a load L which 
satisfies the condition (LC), then L' satisfies (LC) too. 

Exec-Inv 5 (Forwarding). IfT' is the descendant ofT, then (rProvi(r'), rOp^T')) 
{rPro\u(T),rOPi{T)), or (rProVi(T'),rOPi(T")) = (NONE,rRes(C/)), where U € 
executing U lingering, rProvj(T) = name(C7), and rRes(J7) ^ ±. 

Exec-Inv 6 (Memory).    1. Ifmem' ^ mem, then writemem = TRUE and mem' = 
mem • S, where S is a complete store in executing. 

2. If computed contains a store S, then mem' = mem • S and writemem = TRUE. 

Exec-Inv 7 (Most Recent Store). IfT1 andU' are descendants ofT andU, 
and i/mrSt(T) = name(£/), then mrSt(T') = name(C/') unless U' £ computed or 
T is a load with mOp(T) ^ ±. 

Exec-Liv. Let T be an independent transaction in executing. IfT is a store, 
assume also that writemem = TRUE. Then eventually flush = TRUE or name(T) 
occurs among names of transactions in computed. 

8    Conclusions 

In an attempt to bring the power of verification closer to the complexity of com- 
mercial processors, we have specified a general microarchitectural design and 
proved its correctness. Our axiomatization can be satisfied by a family of mi- 
croarchitectures; therefore, it retains a good deal of flexibility as the structure 
of the individual components is developed. Since each component is specified 
independent of other components, the implementation and proof of components 
can be carried out independently. Furthermore, our specifications and proof are 

14 



independent of many considerations that affect performance. For example, we 
do not need to set the number and latencies of subunits of our execution units, 
the width of instruction-carrying wires, the accuracy of branch prediction etc. 
Therefore, many design decisions based on simulation may be made without ad- 
versely affecting the global correctness proof. Note also that the wires present in 
our top-level specification are just what is necessary for interunit communica- 
tion. The units are free to communicate through extra channels; for example, an 
extra wire allows implementation of a branch target buffer within the fetching 
unit. 

Most of the advantages of our approach come as a consequence of using a 
severely minimized axiomatization. This approach is not quite common, proba- 
bly because coming up with a reasonably complete set of invariants for an algo- 
rithm is generally difficult. Considerable skill is required to extract the axioms, 
but in a limited domain, such as that of hardware design, it could be feasible. We 
plan to explore the axiomatics for hardware components and develop a library 
of specifications and typical proofs. 

We intend to construct various refinements of our component specifications 
and thus to show that our axiomatizations can be related to specific microarchi- 
tectures. We have already developed executable PentiumPro-like specifications 
in Hawk using the same structure described here (see [1]); we plan to prove 
the correctness of these executable models by checking their three units satisfy 
our axioms. Transactions, as we have demonstrated, are a useful microarchitec- 
tural abstraction, but they also come with a substantial overhead that should 
be eliminated in lower-level refinements. We plan to develop a methodology for 
shrinking the interfaces of our top-level specifications. 

We expect that further research will confirm that reasoning around the his- 
tory table is a promising proof technique, applicable to pipeline designs in gen- 
eral. Also left to further research is rewriting our axiomatics in a more stringent 
specification style, and mechanization of the proofs. 

Acknowledgments. For their contributions to this research, we thank Mark 
Aagaard, Borislav Agapiev, Robert Jones, and John O'Leary of Intel Strategic 
CAD Labs; Tito Autrey, Nancy Day, Dick Kieburtz and Thomas Nordin of OGI; 
and Arvind of MIT. 

The authors are supported by Intel Strategic CAD Labs and Air Force Ma- 
terial Command (F19628-93-C-0069). John Matthews receives support from a 
graduate research fellowship with the National Science Foundation. 

References 

[1]  Hawk Web page: http://www.cse.ogi.edu/PacSoft/Hawk/. 
[2] M. Aagaard, R. Jones, and C.-J. Seger. Combining theorem proving and trajectory 

evaluation in an industrial environment. In 35th Design Automation Conference 
(DAC '98), pages 538-541. Association for Computing Machinery, 1998. 

15 



[3] M. Aagaard and M. Leeser. Reasoning about pipelines with structural hazards. In 
Second International Conference on Theorem Provers in Circuit Design, volume 
901 of Lecture Notes in Computer Science. Springer-Verlag, 1995. 

[4] Arvind and X. Shen. Design and verification of processors using term rewriting 
systems. IEEE Micro, 1999. to appear. 

[5] S. Berezin, A. Biere, E. Clarke, and Y. Zhu. Combining symbolic model checking 
with uninterpreted functions for out-of-order processor verification. In [9], pages 
369-386. 

[6] J. Burch and D. Dill.   Automatic verification of pipelined microprocessor con- 
trol. In Computer Aided Verification, volume 818 of Lecture Notes in Computer 
Science, pages 68-70. Springer-Verlag, 1994. 

[7] B. Cook, J. Launchbury, and J. Matthews. Specifying superscalar microprocessors 
with Hawk. In Workshop on Formal Techniques for Hardware and Hardware-like 
Systems, Marstrand, Sweden, June 1998. 

[8] Ä. P. Eiri'ksson. The formal design of lM-gate ASICs. In [9], pages 49-63. 
[9] G.  Gopalakrishnan and P. Windley, editors.    Formal Methods in Computer- 

Aided Design (FMCAD '98), volume 1522 of Lecture Notes in Computer Science. 
Springer-Verlag, 1998. 

[10] L. Gwennap. Intel's P6 uses decoupled superscalar design. Microprocessor Report, 
9(2):9-15, 1995. 

[11] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. You assume, we guarantee: 
Methodology and case studies. In [13], pages 440-451. 

[12] R. Hosabbettu, M. Srivas, and G. Gopalakrihnan. Decomposing the proof of 
correctness of pipelined microprocessors. In [13], pages 122-134. 

[13] A. J. Hu and M. Y. Vardi, editors. Computer Aided Verification (CAV '98), 
volume 1427 of Lecture Notes in Computer Science. Springer-Verlag, 1998. 

[14] R. B. Jones, J. U. Skakkebaek, and D. L. Dill. Reducing manual abstraction in 
formal verification of out-of-order execution. In [9], pages 2-17. 

[15] J. Matthews, J. Launchbury, and B. Cook. Specifying microprocessors in Hawk. 
In 1998 International Conference on Computer Languages, pages 90-101. IEEE 
Computer Society, 1998. 

[16] K. McMillan. Verification of an implementation of Tomasulo's algorithm by com- 
positional model checking. In [13], pages 110-121. 

[17] J. Moore, T. Lynch, and M. Kaufmann. A mechanically checked proof of the 
correctness of the kernel of the AMD K86. IEEE Transactions on Computers, 
47(9):913-926, 1998. 

[18] A. Pnueli and T. Arons. Verification of data-insensitive circuits: An in-order- 
retirement study. In [9], pages 351-568. 

[19] J. Sawada and W. Hunt. Processor verification with precise exceptions and spec- 
ulative execution. In [13], pages 135-146. 

[20] B. Shiver and B. Smith. The Anatomy of a High-Performance Microprocessor: A 
Systems Perspective. IEEE Computer Society, 1998. 

16 



A    Appendix: Correctness Proof 

In Sect. 6 we gave a brief and incomplete description of the history table as- 
sociated to a run of our processor model. A precise definition is given below 
in Subsect. A.3. In particular, we prove that the columns of the history table 
stabilize (Lemma 12), so that the sequence Too of limit values is defined. Recall 
that the sequence T£, is obtained by removing from r^ all transactions whose 
corresponding status is not dequeued. We prove that this sequence is equal to 
the concatenation of all sequences of transactions dequeued by our processor in 
the run being considered (Lemma 16). Thus the correctness of the processor can 
indeed be expressed as in Theorem stated in Sect. 6. We repeat it here: 

Theorem. T£, is an execution sequence. 

We also repeat the four Propositions which, in view of Definition 3, imply 
the theorem. 

Proposition 1.  The sequence T£, is infinite. 

Proposition 2. IfU andT are two consecutive elements ofr^, then npc(CZ) = 
addr(T). Also, the value or the addr field of the first transaction ofr^ id pcinit. 

Proposition 3. Let T be a transaction in r£,. IfU is the rth register provider 
ofT in T£,, then rOpr(T) = rRes([/), and ifT does not have an rth provider in 
T£,, then rSourcesr(T) = Tfinit(rSourcer(T)). 

Proposition 4. Let T be a transaction in T£,. IfU is the store provider of T 
in T^, then mOp(T') = mRes({7), and ifT does not have a store provider in r£,, 
then mOp(T) = memjnjt(mSource(T)). 

The proofs of the propositions are given in Subsections A.5-A.8. The defini- 
tion and some basic properties of the history table are given in Subsection A.3. 
The first two subsections contain notational preliminaries and key lemmas about 
the relationships among the processor's components. 

A.l    Terminology 

Regular and singular cycles. For a given run of the processor, the value 
of any state variable v at the cycle n (n > 1) will be denoted by vn. Define 
n to be regular or singular depending on whether flush" is FALSE or TRUE. 
Note that n is singular if and only if dequeued" is non-empty and the last 
transaction in it is mispredicting (Ord-Inv 5). Note also that if n is singular, 
then queue", executing""*"1 and executing""1"1 are empty, by Ord-Inv 2 and 
Exec-Inv 1 respectively. As a consequence, we have that two consecutive numbers 
cannot be both singular. 

17 



Locations. Let us use the terra location for the four wires (fetched, prepared, 
computed, dequeued) and the four state elements (young, mature, executing, 
lingering) that serve as transaction holders in our processor's specification. 
In addition to these, we will also consider a few more defined "locations", 
some of which have previously been defined or just mentioned. First we have 
queue" = mature" =ffyoungn and contents" = executing" 4- lingering", the 
full contents of the ordering and the execution units respectively. Then we have 
enqueued", a prefix of fetched", defined when n is regular and with properties 
given in Ord-Inv 2 and Ord-Inv 3. We define enqueued" = () when n is singular. 
Furthermore, we define ignored" by fetched" = enqueued" $ ignored" when 
n is regular, and ignored" = () when n is singular, ripe" is the transaction set 
consisting of complete transactions in mature". Finally, when n is regular, we 
define squashed" = (), and when n is singular, we define squashed" to be the 
suffix of queue"-1 $ fetched"-1 of length complementary to |dequeued"|. 

Note that the nine location names are used to name the nodes of the trans- 
action diagram T in Fig. 3. If X and Y are two nodes of T we will write X < Y 
if X = Y or there exists a sequence of arcs in T leading from X to Y. There are 
no non-trivial cycles in T, so this is a partial order relation. 

Ancestors and ordinals. A simple fundamental observation is that any trans- 
action present in the processor at any cycle in any of the eight basic locations 
except fetched has a uniquely determined immediate ancestor among transac- 
tions present in the processor at the previous cycle. Note, however, that it is 
not realistic to assume that this relationship is "one-to-one". For example, in 
the model we are considering, each transaction in prepared" wire has a copy of 
itself saved in mature" and each transaction in executing" or computed" also 
has a copy of its ancestor waiting in mature". Choosing a unique "descendant" 
of a fetched instruction in all subsequent cycles is tantamount to the definition 
of the history table; see A.3. 

Since the initial value X1 is empty for every X ^ fetched, it follows that 
starting with any transaction T belonging to a location Xn one can define a 
sequence of transactions in which each is the immediate ancestor of the previous 
one and which terminates at a transaction To belonging to f etched* for some 
k < n. This T0 is a uniquely defined progenitor of T. The ordinal of T is defined to 
be the ordinal of To in the sequence all-fetched = fetched1 ^fetched2 =ff • ■ ■ 
of all fetched transactions. 

It remains to give a precise definition of immediate ancestors. So suppose X 
is a basic location, X ^ fetched, and T € Xn. We define the ancestor T' of T 
and its location yn_1. Consider first the possibilites executing, lingering and 
computed for X. If n - 1 is regular, then T' and Y are found from the inequality 

executing"-1U prepared"-1Ulingering"-1 -< contents" (2) 

of Exec-Inv 2. If n— 1 is singular, then executing", lingering" and computed" 
are empty, so there is nothing to define. Turning to the possibilities young, 

18 



mature, prepared and dequeued for X, we obtain the corresponding T" and Y 
easily from the relations 

young"-1 # enqueued" < prepared" § young", (3) 

mature* ^prepared" = dequeued" ^mature". (4) 

of Ord-Inv 2, provided that n is regular. And if n is singular, then prepared", 
mature" and young" are empty (Ord-Inv 2) so there is nothing to do for them, 
while for dequeued" we have that it is a prefix of a sequence mature*, where 
each member of mature* belongs to either mature"-1 and computed"-1. 

Note that in all cases we have T" < T. 

A.2    Between processor units 

Prom the informal specification of the ordering unit (Sect. 4) we expect that 
transactions in mature" should fall into four well-defined classes: for each T in 
mature", T is either complete and waiting for its turn to be dequeued, or there is 
a unique transaction associated (by name) with T in prepared", executing", or 
computed". Lemma 2 below confirms this basic relationship between the contents 
of the ordering and the execution units. Lemmas 3 and 4 state two important 
relationships between what comes in and what goes out. They refer to the ex- 
ecution unit and the ordring unit respectively, but neither can be derived from 
the axiomatics of a single unit. 

First we need to extend our notation about transaction sets. Transaction sets 
are disjoint if their domains are disjoint as sets; we will write A + B for A U B in 
the case when we know A and B are disjoint. Define A \ B to be the restriction 
of A on the set difference of the domains of A and B. Define A to be a subset of 
B if A(x) = B(x) whenever A(x) ^ (). We will write A - B for A \ B when we 
know that A is a subset of B. 

Lemma l.Ifn and n — 1 are regular, then 

executing"-1 U prepared"-1 -< executing" + computed". 

Proof. Since n is regular, Exec-Inv 2 implies 

(executing"-1Upreparedn-1)+(lingering"-1\prepared"-1) ■< executing"+lingering". 

Since n — 1 is regular, Exec-Inv 3 implies 

lingering" = computed" + (lingering"-1 \ prepared"-1). 

The lemma immediately follows from these relations. D 

Lemma 2. For every regular n, the sets ripe", computed", executing" and 
prepared" are disjoint, and 

mature" < ripe" + computed" + executing" + prepared". (5) 

Moreover, the corresponding elements on the two sides have the same ordinal. 

19 



Proof. The proof is by induction. Since the initial values of all the sets involved 
are empty, the initial case is true. The induction step splits into two cases, 
depending on whether n — 1 is regular or not. 

Assume first n — 1 is not regular. By Ord-Inv 2, we have mature"-1 = 
young™-1 = () and then prepared" = dequeued™ ^mature™. This implies 
mature™ = prepared™ because all transactions in dequeued™ are complete and 
so cannot occur in prepared™, which (by Ord-Inv 4) contains only incomplete 
transactions. It remains only to prove that the sets ripe™, computed™ and 
executing™ are empty. For ripe™ it is true because all elements of mature™ 
are incomplete. The other two are subsets of contents™ which is empty by 
Exec-Inv 1. 

Assume now that n - 1 is regular. By Ord-Inv 2, we have 

mature* + prepared™ = dequeued™ + mature™, (6) 

where mature* is obtained by replacing every transaction in mature™-1 with an 
equally named transaction of computed™-1. By induction hypothesis, all names 
of computed™-1 occur among names of mature™-1, so we have 

mature* = computed"-1 + (mature™-1 \ computed™-1). (7) 

Combining (6) and (7), and the induction hypothesis in the form 

mature"-1 \ computed™-1 -< ripe™-1 + executing™-1 + prepared™-1, 

we obtain 

dequeued™ +mature™ ■< computed™-1 + ripe™-1 + executing™-1 

+ prepared™-1 + prepared™. (8) 

Observe now that ripe"-1 + computed™-1 is the set of complete transactions in 
mature*; this follows from (7), the fact that all transactions in computed™-1 are 
complete, and the induction hypothesis implying that the complete transactions 
in mature™-1 \ computed™ are precisely those of ripe"-1. Since no transaction of 
prepared™ is complete (Ord-Inv 4) and all transactions of dequeued" are com- 
plete (Ord-Inv 5), it follows from (6) that the same set of complete transactions 
of mature* can also be written as dequeued™ +ripe™. Thus, (8) rewrites into 

dequeued™ + mature™ < dequeued™ + ripe™ + executing™-1 

+ prepared"-1 + prepared", 

and the desired result follows immediately from Lemma 1. 
It remains to go back and check that the ordinals are the same for any two 

correspondind members of the two sides of any equality and inequality that was 
used in the proof. This is done by a straighforward inspection. D 

Lemma 3. If n and n — 1 are regular, then 

executing™-1 + prepared™-1 ^ executing™ + computed™. 

20 



Proof. This is a strengthening of Lemma 1; that prepared" l and exec11 x are 
disjoint is a part of Lemma 2. D 

Lemma 4. // n and n — 1 are regular, then 

computed" + ripe" = dequeued""*"1 + ripe""1"1 (9) 

and all transactions of this set belong to lingering""*"1. 

Proof. The equation is proved in the course of proving Lemma 2. As in the proof 
of Lemma 1, we have 

lingering" = computed" + (lingering"-1 \ prepared"-1), 

so all we need to prove is that ripe" is a subset of lingering"-1 \prepared"-1. 
Arguing by induction, the problem reduces to showing that the sets ripe" and 
prepared"-1 are disjoint. Indeed, by Exec-Inv 2 and Exec-Inv 3, every trans- 
action in prepared"-1 has a descendant in executing" or computed", and by 
Lemma 2, these two sets are disjoint from ripe". D 

A.3    Definition of the history table 

The top row of Fig. 3 depicts all possible paths through selected processor lo- 
cations that a normally completed transaction can have, form fetching through 
retiring. A transition from X to Y in most cases should be interpreted as "it is 
possible that a transaction in Xn has a corresponding transaction in Yn+1". The 
diagram also suggests that all transactions in Xn should have a corresponding 
transaction in some Yn+1 for some Y, the target node of an arc coming from X. 
"Corresponding" here means having the same ordinal, i.e., being related to the 
same fetched instruction. Our goal is to define the history of execution of any 
fetched instruction, so we would like to define "transitions" (T,X) ~> {T',Y) 
with (T", Y) uniquely determined by (T,X). When more than one such transition 
is possible, we select the right one according to the values of "control variables" 
(flush in our case). 

Transaction flow. The subgraphs of r defined in Figs. 5-7 represent the trans- 
action flow between cycles n and n + 1, depending on whether these numbers 
are regular or singular. The following lemma states this in precise terms. 

Lemma 5. Let n > 2 and 

{rrr    if both n — 1 and n are regular 
rrs    if n is singular 
rsr    ifn — 1 is singular 

and let 

Inn = {(T, X) | T € Xn x and X is the source of an arrow of rn}, 
Outn = {(T',Y) | V G Yn and Y is the target of an arrow ofTn}. 

21 



(fetched )-»-(young)—»-( prepared)—»-( executing)—»-(computed)—^-( ripe )—»-(dequeued) 

(ignored) (squashed) 

Fig. 5. rn 

(fetched)       (young)        (prepared) ( executing)        (computed)        (ripe )—»-(dequeued) 

(ignored) 

Fig. 6. rrs. 

(fetched )—»-( young)        ( prepared) ( executing)        (computed) (ripe )        (dequeued) 

f 
(ignored) (squashed) 

Fig. 7. r„ 

22 



Then the relation "have the same ordinal" defines a bijection 5n:Inn -¥ Outn. 
Moreover, if Sn(T,X) = (T',Y), then X and Y are joined by an arrow in rn, 
and, in the cases rn = rrr and rn = rsr, T -<T'. 

Proof. We claim that if n + 1 is regular, then 

young" #fetched" < prepared""1"1 #young"+1 #ignored"+1,        (10) 

and if both n and n + 1 are regular, then 

prepared" + executing" < executing""1"1 + computed""1"1, (11) 

computed" + ripe" = dequeued""*-1 + ripe"+1. (12) 

Indeed, (10) follows from (3) and fetched" = enqueued"4"1 # ignored""1"1, and 
(11) and (12) follow from Lemma 3 and Lemma 4 respectively. The case of 
the lemma when Fn = rrr immediately follows from these relations. Since 
young" = () when n is singular, the case Tn = rrs follows from (10) alone. 
Finally, in the case when r„ = rsr we have that squashed""1"1 is the suf- 
fix of mature" ^young" $f etched" of length complementary to the length of 
dequeued""1"1 and that dequeued""1"1 is a prefix of mature*, the sequence ob- 
tained by updating mature" with transactions of computed". The lemma now 
easily follows from Lemma 2. D 

History table. Recall the definition of ordinals of transactions. In particular, 
transactions in the sequence all-fetched = fetched1 $f etched2 #••• have 
distinct ordinals. For every i > 1, we define the nascency rank nr(i) to be 
the number n such that fetched" contains a transaction with ordinal i. (If 
all-fetched is finite, then nr(i) would be defined only for i < |all-fetched|, 
but we will prove that all-fetched is infinite, so nr is defined for every positive 
integer.) 

Definition 4. For a given run of the processor and every n and i such that 
n > nr(i) define H%

n inductively as follows: 

1. Ifn = nr(i), then Hl
n = (T, fetched), where T is the transaction in fetched" 

whose ordinal is i. 
2. If Hfl_1 = (T,X) and X is a final location, then H%

n = H^l_1. 
3. IfH^i = (T,X) andX is not final, then Hl

n = Sn-iiH^). 

The history table H is the table whose element belonging to the nth row and the 
ith column is Hl

n. 

The sequence of elements occuring in the nth row of H will be denoted by 
Hn. The transaction and the status components of Hl

n will be denoted T£ and 
X„ respectively. The sequence of transaction components of Hn will be denoted 
rn and the sequence of the status components of Hn will be denoted £„. 

Lemma 6.  The definition of the history table is correct. 

23 



Proof. The only thing that needs to be checked is that if H^-i = (T, X) and X 
is not final, then (T, X) belongs to Inn, the domain of Sn. If X = fetched, then 
this is obvious. Otherwise, (T,X) - ön-i(T',X'), so (T,X) € Outn_i. Thus, 
X is a target of an arrow in rn_i and (by inspection of the eight possibilities 
for rn-i and rn) it follows that X is a source of an arrow of r„, finishing the 
proof. D 

A.4    Basic properties of the history table 

Lemma 7. If H^ is defined then 

1-   %n < Xn+1>' 

2. Tl
n< Tl

n+1, provided X'n+1 ^ squashed. 

Proof. The proof follows immediately from Definition 4 and Lemma 5. D 

Lemma 8. All elements of Outn occur in Hn. D 

Proo/. The proof is obtained by strengthening the last argument in the proof of 
Lemma 6 by using bijectivity of 6n. □ 

Note that the statuses related to the execution unit (prepared, executing, 
computed) do not occur in Hn when n is singular, so that the descendancy 
relation of Sect. 7 is not exactly reflected in the history table. In transitions 
between regular cycles, however, the descendancy in the execution unit can be 
seen in the table, as stated in the following lemma, easily derived from definitions. 

Lemma 9. If n and n+1 are both regular and X%
n is prepared or executing, 

then T„+1 is the descendant of T„ (in the sense of Sect. 7). D 

Let Act denote the set consisting of the five nodes of r that are neither 
initial nor final. Let active" be the sequence obtained from r„ by removing all 
transactions whose corresponding location is not in Act. 

Lemma 10. For every n, queue™ ■< active™. Moreover, if n is regular, then 
active™ is the sequence obtained by replacing every transaction in mature™ with 
an equally named transaction in the set computed™ + executing™. 

Proof. Suppose first n is singular. Since queue™ = (), we need to show that 
active" = () too. Indeed, all elements of Outn are of the form (T, X), where X 
is either dequeued or squashed (Fig. 6), and by Definition 4, the status of all 
elements in the nth row of H is final. 

Suppose now n is regular. By Lemma 8, if X £ Act and T £ Xn, then 
(T, X) occurs in Hn. Then, by Lemma 2, there exists a bijection T H* T" between 
elements of active™ and queue™ such that T' -< T. All that remains to prove is 
that the elements of queue" = mature™ $young™ have increasing ordinals, and 
that follows easily from the definitions of ancestors and ordinals. D 

24 



Now we can derive an often used lemma that guarantees existence of regular 
number intervals. 

Lemma 11. If Xl
n< dequeued and nr(i) <m <n, then m is regular. 

Proof. Since m > nr(i), we have Xl
m > fetched. Since m < n, we have X%

m < 
dequeued (Lemma 7). Thus, Xl

m e Act and so active" ^ (). Since queue" = () 
when n is singular (Ord-Inv 2), the result follows from Lemma 10. D 

The following is a stabilization lemma for columns of the history table. 

Lemma 12. For every i, the sequence Hl
n is eventually constant. 

Proof. Let Hl
n = (Tn,Xn). By Lemma 7 Xn < Xn+i in T. Since T is finite and 

the only cycles in it are loops at nodes, it follows that the sequence Xn stabilizes 
at n0, say. Let X be its limit value. If X is final, then, again by Definition 4, 
H£ stabilizes as well. The remaining possibility is that X is young, executing 
or ripe. By Lemma 11, all numbers greater than n0 are regular. By Lemma 5, 
we then have Tn ■< Tn+i for all n > no- By definition of progress ordering, 
all strictly increasing chains of transactions are finite, so the sequence Tn is 
eventually constant. □ 

The cycle at which the sequence Hl
n assumes its stable value will be denoted 

sr(i), the stabilization rank. The limit row Hoo is the sequence of stable val- 
ues: Hie = limn H^. The sequence of transactions and the sequence of statuses 
occurring in Hoo will be denoted T^ and £«>. 

Lemma 13.  The sequence dequeued""1"1 is a prefix of active". 

Proof. By Ord-Inv 2, dequeued""1"1 is a prefix of mature*, the sequence ob- 
tained by replacing transactions in mature" with equally named transactions 
of computed". When n is singular, dequeued""1"1 is empty because mature" is 
empty. When n is regular, the corollary follows from Lemma 10. D 

Let r+ be the sequence obtained from r„ by deleting all members whose 
corresponding status is ignored. Let also T®

S
 be the sequence obtained from rn 

by keeping only its members whose status is dequeued or squashed. 

Lemma 14. r+ = r°s #active" #fetched". 

Proof. The proof is by induction. Assume r+ has the given form. By Definition 4, 
fetched""*"1 is a suffix of r^"+1. The prefix r°s remains intact in r^"+1, by the 
same definition. 

By Lemma 13, dequeued""1"1 occurs as a prefix in active" and so, by Defini- 
tion 4, it will occur at the corresponding places in rn+1. Therefore, the sequence 
r£s ^dequeued""1"1 is a prefix of r++1. Now, if n+1 is regular, then, for each T„ of 
active" which does not occur in the prefix dequeued""1"1, we have X^+1 G Act 
(diagram rrr or rsr, though in the latter case there are no such elements T£). 

25 



Also, if Tl
n is in fetched", then Xl

n+1 e Act or Xl
n+1 = ignored. This fin- 

ishes the proof if n + 1 is regular. If n + 1 is singular, then for every X£ in 
active"$fetched" that does not belong to the prefix dequeued""1"1, one has 
X^+1 = squashed (diagram rrs). D 

As an immediate consequence of this lemma and its proof, we obtain the 
following. 

Lemma 15. For every n > 1, r°s = T^J ^dequeued" ^squashed". If n is 
singular, then T%

S
 = T+ . □ 

Lemma 16. r° = dequeued1 $ ■ • • ^dequeued" and T% is a prefix of r^,. 

Proof. By induction, using Lemma 15. D 

Let £+ be the sequence obtained from £n by deleting all members equal to 
ignored. 

Lemma 17. For every n, the sequence £+ regarded as a string, belongs to the 
set defined by the regular expression 

{dequeued, squashed} * {execut ing, computed, ripe} * {prepared}* {young} * {f et ched}* 

Moreover, if n is singular, then the regular expression can be restricted to 

{dequeued,squashed}*{fetched}*. 

Proof. The lemma follows from Lemma 15 and a simple observation that the 
sequence prepared" # ignored" is a suffix of queue" that occurs also as a suffix 
in active" (see Lemma 10). D 

All transactions in fetched" have maximal values in their fields instr, addr 
and spc, and the field name is maximal in transactions of young". In prepared", 
all transactions have maximal values in their fields opcode, rSources and rDest. 
In computed" transactions are complete and so have maximal values in all fields. 
Combining these observations with Lemma 7, we obtain the following lemma, 
often used without being explicitly mentioned. 

Lemma 18. Fix i, letp,q > nr(i) and denote Hl
p = (TP,XP), Hq = (Tq,Xq). 

1. field(Tp) = field(Ts) ^ ± for any field € {instr, addr, spc} 

2. Ifp,q > nr(i), then name(Tp) = name(T?) ^ J_. 

3. //prepared < Xp,Xq < dequeued, then field(Tp) = field(T?) ^ ± for any 
field € {opcode, rSources, rDest} 

4- If computed < Xp, Xq < dequeued, then Tp = Tq. 

D 

26 



Lemma 19. If i < j, then nr(i) < nr(j')- If i < 3 and X^ ^ ignored, then 
sr(i) < sr(j). 

Proo/. The first statement is an immediate consequence of the definition of nr. 
For the second statement, if X^ = ignored, then sr(i) = nr(z') +1 and sr(i) < 
sr(j) easily follows. The interesting case, when neither of -X^.XJ, is ignored, 
follows from Lemma 16. E3 

Lemma 20. Suppose i < j and X\,Xi G Act. Then X^ = dequeued implies 
that XIQ = dequeued. 

Proof. Suppose the lemma is not true. By Lemma 17, we must have Xl
n = 

squashed. Consequently, sr(i) is singular. By Lemma 19, n < sr(i) < sr(j). 
Lemma 11 discards all but the possibility sr(i) = sr(j'). This, however, contra- 
dicts the definition of squashed" (dequeued transactions precede transactions 
squashed at the same cycle). D 

A.5    Proof of Proposition 1 

Lemma 21. DO fetched^ (). 

Proof. Assume the contrary: OD fetched = (). It follows then from (10) that 
OD prepared = (). Then (11) implies OO computed = (), and then (12) implies 
OG dequeued = ()• Now from Ord-Inv 9 we deduce OD rpc = () and reach a 
contradiction with Fetch-Liv. □ 

Lemma 22. DO queue ^ (). 

Proof. Assume, on the contrary, that OD queue = (). Then, by Ord-Inv 2, 
OD dequeued = () and then, by Ord-Inv 7, OD flush = FALSE. Also by Ord- 
Inv 2, OD enqueued = (). By Lemma 21, there exists i such that fetched1 ^ (), 
while queue* = enqueued* = dequeued* = () and flush* = FALSE for all k > i. 
Let x = rpci+1. By Ord-Inv 9, x ^ (), while rpci+1 = () for all k > i + 1. By 
Ord-Inv 10, xpc* = x for all k > i. Now let j be the smallest number greater 
than i such that fetched^ ^ (); it exists by Lemma 21. We have pc-rpcl+1 = x 
and, by repeated application of Fetch-Inv 3, pc-rpcJ = x as well. If T is the first 
transaction of fetched*, then addr(T) = x (Fetch-Inv 2), and then Ord-Inv 3 
implies that enqueued7"1"1 ^ (), which is a contradiction. D 

Lemma 23. All locations occurring in the entries of Hoo are final. 

Proof. Since each of fetched, prepared and computed can occur at most once 
in any given column of the history table, none of them can occur in £00. We 
need to eliminate the possibility of occurrences of young, executing and ripe. 
Assuming the contrary, let k be the smallest integer such that X^ = X is one of 
these three and let m = sr(A;). Then H^ = (T, X) for some T and, by Lemma 10, 
queue™ begins with a transaction Tn such that Tn ■< T, for all n> m. 

27 



Case 1: X = young. Now we have young"1 ^ () and so mature™ = () for all 
n > m. This implies prepared™ = () for all n > m, directly contradicting 
Ord-Liv. 
Case 2: X = ripe. We have dequeued™ = () for all n > m. By Lemma 2, Tm 

equals T and so is complete. This again contradicts Ord-Liv. 
Case 3: X = executing. Note first that, by Ord-Inv 8, writemem"1 = TRUE if 
T is a store; indeed, Tn is a store and is not complete since that would imply 
X = ripe. Secondly, by Lemma 11, all numbers greater than m are regular. 
Thirdly, since executing™ and computed™ are disjoint, name(T) does not occur 
in computed™ for any n> m. These three facts, combined with Exec-Liv imply 
that T is not independent. Thus, we have (1) rOpj(T) = ± for some i, or (2) 
mrSt(T) ^ NONE. Since m = sr(fc) and X^ = computed, it follows that X^_1 = 
prepared. 

If (1) holds, then by Ord-Inv 4, there exists U in queue"1-1 such that 
rProvj(T4_!) = name([7). If (2) holds, then, again by Ord-Inv 4, there exists 
U in queue™ such that mrSt(T^_1) = name(C7). In both cases we have that 
T^l_1 depends on T£ for some j < k. Since j < k and all numbers greater than 
n are regular, we have X^ = dequeued and so there exists n such that T£ is 
in computed™. Then T^ also occurs in lingering™ (Exec-Inv 3). By Lemma 18, 
name(T^) = name(T^_1), so T* = T depends on TJj, contradicting the ax- 
iom that a transaction in executing™ cannot depend on any transaction in 
lingering™ (Exec-Inv 3). D 

Proof of Proposition 1. If i is the ordinal of a transaction in queue", Lemma 23 
implies that X^ is either dequeued or squashed. It follows then from Lemma 22 
that £oo contains infinitely many entries equal to dequeued or squashed. In 
other words, the sequence r^,s is infinite. By Lemma 15, this sequence is the 
concatenation of all sequences dequeued™ $ squashed™. Since dequeued™ ^ () 
whenever squashed™ ^ () (by definition of squashed and Ord-Inv 7), it follows 
that dequeued" jt () for infinitely many values for n, and therefore ££, is infinite. 

A.6    Proof of Proposition 2 

Let T^ and T^ be two consecutive elements of r^,. We need to prove that 
npcCO = addr(T^). Let m = sr(z), n = sr(j), rri = nr(i), and ri = nr(j); by 
Lemma 19, we have m <n and m' < n'. 

First we show that every p between m and n (if it exists) is regular. Assume 
the contrary: there exists a singular p such that m < p < n. Then dequeuedp ^ 
(), by Ord-Inv 5. Thus, there exists I such that sr(Z) = p and X1^ = dequeued. 
By Lemma 19, it follows that i < I < j, contradicting the assumption that T^ 
and Tb are consecutive in r^,. 

Assume first that T^ is not mispredicting; the other case will be considered 
separately. Since now npc(T^) = spc(T4), all we need to show is spc(T(j0) = 
addr(T4). If m' = n' then T^, and T^, are members of fetched"1' and both be- 
long to enqueued"1 +1. Using Lemma 20, we deduce that these two transactions 

28 



must be consecutive in fetched"1'.Therefore, spc(Tjj,,) = addr(T^,), by Fetch- 
Inv 2. Now assume n' > m'. Then T^,+1 is the last element of enqueued"1 +1, 

^n'+i *s *^e ^rst element °f enqueued" +1, and enqueued7" = () for all r between 
m' + 1 and n' + 1 (if there are any such r). We claim that all r between m' 
and n' are regular. We know that all numbers between m' and m are regular 
(Lemma 11), and that all numbers between m and n are regular (proved above). 
Thus, the claim fails only if m is singular and n' > m. Then T^ would be the 
last transaction in dequeued"1 (because n> m now and dequeued7- = () for all r 
between m and n), contradicting the assumption that T^ is not mispredicting. 

We can conclude that xpcTO'+1 = spcCT^,) from Ord-Inv 10, that xpcm'+1 = 
••• = xpc"' (also from Ord-Inv 10), and that xpc"' = addr(T^,+1) from Ord- 
Inv 3. This finishes the proof in the case when T^ is not mispredicting. 

Assume finally that T^ is mispredicting. It follows from Ord-Inv 5 that m is 
singular and also that xpcm+1 = npc(T^) (Ord-Inv 9 and Ord-Inv 10). It follows 
also that n' > m; otherwise T^ would exist and would be in active"1, which is 
absurd because this sequence must be empty since m is singular. 

It follows that T^,+1 is the first element of enqueued" +1 and that enqueued7" = 
() for every r between m and n' +1. We already know that the numbers between 
m and n' + 1 are all regular, and it follows from the Ord-Inv axioms, similarly 
as in the previous case, that xpcm+1 = • • • = xpc" +1 = addr(T^,+1). 

We also need to prove that addr(T^0) = pcinit. We do have pc1 = pcinii by 
Fetch-Init. Let n = nr(l). By Fetch-Inv 2, addr(r^) = pc71"1. Since addr^) = 
addr(T^) (Lemma 18), it suffices to check that pc71-1 = pc1. In view of Fetch- 
Inv 3, this reduces to proving rpcm = () for 1 < m < n — 1. The last claim is 
a consequence of Ord-Inv 9 and simple facts flush"1 = FALSE and queue"1 = () 
for all m < n — 2. 

A.7    Proof of Proposition 3 

Lemma 24. For every reg € Reg and n > 1, 

fn/      \ _ / rRes(T') ifT is the last element in T% such that rDest(T) = reg 
\ rf init (reg)    if such T does not exist 

Proof. The proof follows from Lemma 16 and Ord-Inv 6. D 

Denote by r° the sequence obtained from T„ by removing all its elements T£ 

such that X\ is ignored or squashed. 

Lemma 25. Let prepared < Xl
m,X

l
n < dequeued. If m < n and T£ is the rth 

register provider ofT„ in T°, then T^ is the rth provider ofT^ in r^. Also, if 
T£ does not have the rth register provider in T° , then TjJ, does not have the rth 

provider of in r^. 

29 



Proof. We prove only the first assertion of the lemma. The proof of the second 
is analogous. 

Since X%
m < X%

n and X3
m < X3

n, neither of X^X^ is ignored or squashed, 
so T4> TL are in Tm- % Lemma 18, rSourcer(T4) = rSourcer(T^) and rDest(T^) = 
rDest(T^). Thus, rSourcer(T4) = rDest(T^). 

Suppose now A; is such that j < k < i, T^ is in T£,, and rSourcer(T^) = 
rDest(r^). Again, by Lemma 18, we have rSourcer(T^) = rDest(T*), so T* does 
not belong to r°. Thus, X* is ignored or squashed. The only possibility for 
X* = ignored would be that m = n-1 and X^ = fetched, but that contradicts 
Lemma 17. If X* = squashed, then it would follow that there exists p such that 
Tp belongs to squashedp. This would imply that Tp belongs to squashedp, which 
is not true. □ 

Proof of Proposition 3. Suppose T and U are transactions in T^, such that U is 
the rth register provider of T. Let i and j be the ordinals of T and U respectively. 
Denote Hl

k = (Tk, Xk) and HJ
k = (Uk,Yk). Let n = sr(«) and let m be the unique 

integer such that Xm = prepared. Prom Lemma 11 we have that every k such 
that m < k < n is regular. 

By Lemma 16, Un is the rth provider of Tn in T°. Then, by Lemma 25, Um 

is the rth provider of Tm in T£,. By Lemma 17, Ym > prepared. Note also that, 
being an element of prepared7™, Tm belongs to queue™. 

Case 1: Ym = dequeued. By Lemma 17, Tm does not have an rth register provider 
in active771. It follows, using Lemma 10, that Tm does not have an rth provider 
in queue771. Let reg = rSourcer(Tm). By Ord-Inv 4, reg ^ ± and rOpr(Tm) = 
rfm(reg). Since Um is the rth provider of Tm in r^, it follows that Um is the 
last transaction in r^ whith rDest field equal to reg. It follows from Lemma 24 
that rOpr(Tm) = rRes([7m) and so rSources(T) = rRes([/), as required. 

Case 2: Ym ^ dequeued. Now Ym belongs to active771. Since Um is the rth 

provider of Tm in r^, it follows that Um is the rth provider of Tm in active771 as 
well. From Lemma 10 we deduce that U^ is the rth provider of Tm in queue771, 
where U'm < Um. It follows from Ord-Inv 4 that rOpr(Tm) = ± and rProvr(Tm) = 
name('7^), which immediately implies rProvr(Tm) = name(C/m). 

Since Tm -< ••■ ■< Tn, rOp(Tm) = ± and rOp(Tn) ^ ±, there exists a unique 
number p such that m < p < n, rOp(Tp) = _L, and rOp(Tp+i) ^ ±. Since 
Tp is incomplete, it belongs to executingp or preparedp. From Lemma 9 we 
conclude that Tp+i is the descendant of Tp. Furthermore, Exec-Inv 5 implies that 
there exists a transaction V in executingpUlingeringp such that rProvr(Tp) = 
name(?7) and rOpr(Tp+i) = rRes(F) ^ J.. It follows that name(F) = name(77m). 
We claim that V = Up, which then implies rOpr(T) = rOpr(Tp+i) = rRes(f7p) = 
rRes(f7), finishing the proof. 

Suppose the claim is not true. Then Up cannot belong to activep because 
this sequence contains V and cannot contain two transactions with the same 
name. It follows that X^p = dequeued, so there exists q such that p < q < m 
and Uq is in computed' and so in lingering9. Since Tq belongs to executing9 

30 



and rProvr(Tg) = name(£/g), it follows that Tq depends on Uq. This contradicts 
Exec-Inv 3, finishing the proof of the claim. 

Fig. 8. Transactions involved in the resolution of a register dependency (Case 2 of the 
proof of Proposition 3). 

We also need to prove rOpr(T) = rfinjt(rSourcer(T)) in the case when T = 
T^ does not have the rth register provider in T°,. Let again m be the integer such 
that Xm = prepared. By Lemma 25, T^ does not have the rth provider in r^. As 
in Case 1 above, we obtain rOpr(T,jJ = rfm(reg), where reg = rSourcer(T^). 
Using Lemma 24, we deduce rfm(reg) = rf mit (reg), finishing the proof. 

A.8    Proof of Proposition 4 

Lemma 26. Every load i'nprepared"+executing" satisfies the condition (LC). 

Proof. By Ord-Inv 4, the mOp field of every load in prepared" is _L, so (LC) is 
true for such loads. Furthermore, every load in executing" is a descendant of a 
load in prepared"-1 Uexecuting"-1, so by induction on n and using Exec-Inv 4, 
it follows that these loads also satisfy (LC). D 

Lemma 27. // computed" contains a store, then this store is the first transac- 
tion in active". 

Proof. Suppose the lemma is not true and pick the minimal n that provides a 
counter-example. Suppose Tl

n is. a store in computed" and Tl is the first trans- 
action in active", and j < i. Pick i so that i — j is smallest. 

Let U be the first transaction of queue". By Lemma 10 U ■< T^. By By 
Exec-Inv 6, writemem" = TRUE and by Ord-Inv 8, U is an incomplete store. 
Using Lemma 17, we conclude that T^ belongs to executing". 

Let m be such that T^ belongs to prepared™. By Lemma 19, T^ belongs 
to active"1 and so, by Ord-Inv 4, mrSt(T,^) = name(T^) for some k such that 

31 



j < k < i. Since mrSt(X^) ^ mrSt(T^), it follows from Exec-Inv 7 that for some 
p such that m < p <n one has T£ in computed15. 

Since T^ is in executing", T^ is not in computedp, so k ^ j. Thus, T* is a 
store in computedp and is not a first transaction in activep. By minimality of 
n, we have p = n and then a contradiction with the minimality assumption on 
i. D 

Corollary 28. //active" contains a complete store, then it is its first transac- 
tion. If dequeued" contains a store, then it contains only one and it is its first 
transaction. D 

Proof. The first statement is an immediate consequence of Lemma 28. For the 
second, use also Lemma 13 D 

Corollary 29. 7/mem"+1 ^ mem" then the first transaction S in active" is a 
complete store in executing" and mem""1"1 = mem" • S. 

Proof. The proof follows directly from Exec-Inv 6 and Corollary 28. D 

Lemma 30. If computed" + ripe" contains a store S, then mem" = mem" • S. 

Proof. Suppose S = Tn. Then, for some m < n, T^ = S is in computed"1, and 
so, by Exec-Inv 6, mem™ = memm_1 • S. Therefore, memm • S = memTO. For every 
p such that m < p < n, T* is in ripep and is the first transaction in active*'. 
It follows from Corollary 29, that memp = memm for all such p. In particular, 
mem" = mem"1 and the lemma follows. D 

Lemma 31. For every n, mem" = memjm-t • T® or mem" = memjn;t ■ T® • S, where 
S is a store and is a first transaction of active". 

Proof. We argue by induction. The initial case is clearly true. For the induction 
step, suppose first that mem" = memi„j( • T%. If dequeued""1"1 is non-empty and 
contains no store, then memn+1 = mem" by Lemma 29, and memjraj( • r^+1 = 
meminit ■ T® • dequeued""1"1 = mem*,^ • T£+1 is clear. If dequeued"+1 contains a 
store S, then by Lemma 28, dequeued""1"1 begins with S and contains no other 
stores. Being an element of dequeued""1"1, S belongs to computed" or ripe" 
(Eq. 12), so by Lemma 29, mem"+1 = mem". On the other hand, Lemma 30 
implies mem" = mem" • S and so mem" = mem" • dequeued""*"1 = memj„it ■ T%+1. 

Finally, if dequeued"4"1 is empty, then T®+1 = T° and both mem"+1 = mem" 
and mem"+1 ^ mem" are possible. The desired result in the first case follows 
immediately, and in the second case it follows from Lemma 29. 

Assume now the second possibility for the inductive hypothesis: mem" = 
meminit-r^ -S, where 5 is a store and is a first transaction of active". Lemma 29 
implies mem"+1 = mem". If dequeued""1"1 is empty, the result immediately follows. 
If dequeued""1"1 is non-empty, then it begins with S and contains no other stores, 
so mem"+1 = mem" = memj„jt • T® ■ S = meinet • r^ • dequeued""1"1 = mem;nj( • 

32 



Lemma 32. // T is a load or store in prepared" + executing" and U is 
the most recent store of T in active", then either (1) U is in prepared" + 
executing" and mrSt(T) = name(J7), or (2) U is in computed" + ripe" (and 
therefore is the first transaction in active",) and mrSt(T) = NONE. 

Proof. Let Tl
n = T and T£ = U. Let m be such that T^ is in prepared"1. Then 

T^ is in active7" and so mrSt(T4) = name(T4), where T^ is the most recent 
store for T^ in active"1. We claim that k = j. Otherwise, using Exec-Inv 7 we 
would obtain T* in computedp for some p < n, contradicting Corollary 28. The 
lemma now follows from Exec-Inv 7 and Corollary 28. D 

Corollary 33. Let T be a load or store in prepared" + executing" and let <j> 
be the store chain of T in this set. Then cj) is equal to the sequence of stores in 
prepared" + executing" that precede T in active". D 

Lemma 34. Let L be a load in prepared" + executing" and let ip be the pre- 
fix of active" consisting of transactions preceding L. Then mOp(L) ■< (mem" • 
^>)(mSource(L)). 

Proof. By Lemma 26, mOp(L) ■< (mem" • </>)(mSource(L)), where (f> is the store 
chain of L in prepared" + executing". Let V'o be the sequence obtained by 
deleting from tp all transactions which are not stores. Clearly, mem"-i/> = mem"-0o- 
By Corollary 28, all transactions in ipo are in prepared" -I- computed", except 
possibly the first store (say, S), which may belong to computed" + ripe". By 
Lemma 33, we have ipo = </> in the first case, and ipo = (S) $<j> in the second. By 
Lemma 30, mem" ■ (j> = mem" • ipo, finishing the proof. D 

Lemma 35. Let a and ß be transaction sequences such that a < ß. Let mem be 
an element of type IAddr -> Value and addr an element of type IAddr. Then 
(mem • a)(addr) ■< (mem • ß)(addr). 

Proof. By direct examination. D 

Proof of Proposition 4- Suppose L is a load in T£,. Let 6 be the prefix of T£, 

consisting of transactions that precede L. We will prove that mOp(L) = (mem;„j( • 
0)(mSource(L)). It is easy to see that this would imply Proposition 4. 

Let i and be such that L = T^ and and let n be the largest number such 
that T£ is in prepared" + executing". Thus, T£+1 is in computed""1"1 and it 
follows from Exec-Inv 7 that mOp(T£) # ±. Thus, mOp(T£) = mOp(L) and 
mSource(T^) = mSource(L). 

Prom Lemma 34 we then obtain mOp(L) ■< (mem" ■ V')(mSource(L)), where ip 
is the prefix of active" consisting of transactions preceding L. By Lemma 31, 
mem" is equal to either memjnit ■ r° or mem;n;t -T^-S, where the store S is the first 
transaction of active". Since ip is a prefix of active" (and L is not a store), it 
follows that mem" ■ ip = mem;njt • T® ■ ip. 

By Lemma 20, all transactions of ip are eventually dequeued. Thus, r° #ip ■< 
6. Using Lemma 35, we finally obtain mOp(L) ■< (mem;«« -ö)(mSource(L)), which 
must be equality because mOp(L) ^ ±. 

33 



On embedding a microarchitectural design language within Haskell 

John Launchbury, Jeff Lewis and Byron Cook 
Oregon Graduate Institute 

Abstract 

Based on our experience with modelling and verifying mi- 
croarchitectural designs within Haskell, this paper examines 
our use of Haskell as host for an embedded language. In 
particular, we highlight our use of Haskell's lazy lists, type 
classes, lazy state monad, and unsafePerformlO. We also 
point to several areas where Haskell could be improved. 

1    Introduction 

There are many ways to design and implement a language — 
not all of them imply building from the ground up. Landin's 
vision of the next 700 programming languages [18], for ex- 
ample, was to build domain-specific vocabularies on top of 
a generic language substrate. In the verification community, 
this is known as a shallow embedding of one language or logic 
into another. Prom our programming language perspective 
we believe that, in effect, every abstract type defines a lan- 
guage. Admittedly, most abstract types by themselves make 
poor languages, but when interesting combinators are pro- 
vided the language suddenly becomes rich and vibrant in 
its own right. This explains the continuing popularity of 
combinator libraries, from the time of Landin until now. 

The animation language/library Fran is a beautiful ex- 
ample [10, 9]. Fran provides two families of abstract types 
in Haskell: behaviors and events. To construct a term of 
type Behavior Int, for example, is to write a sentence in 
the Fran language, using Fran primitives and Fran combi- 
nators. To build complex Fran entities, however, the full 
power of Haskell can be brought to bear. Fran objects are 
just another abstract data type. 

How good is Haskell at hosting other languages? This is 
one of those questions that can only be answered through 
experience—and is precisely where we can contribute. In 
this paper we describe our use of Haskell as a host to a 
microarchitectural modelling language, calling attention to 
the aspects of Haskell that helped us, those that hindered us, 
and the features we wish we had. In particular, we highlight 
our use of Haskell's lazy lists, type classes [15], the lazy state 
monad [19], and unsaf ePerf ormlO [17]. This paper contains 
no deep theory, but rather a dose of measured introspection. 

The remainder of this paper is organized as follows: In 
Section 2 we provide the motivation to our work in microar- 
chitectural modelling. In Section 3 we introduce Hawk and 
show how we use lazy lists to model wires. In Sections 4, 5, 
and 6, we show how type classes, the lazy state monad, and 
unsaf ePerf ormlO, respectivly, are put to use in Hawk.  In 

Section 7 we describe an application that makes use of all 
four features. In the final sections we outline where Haskell 
has constrained us, and discuss future work. 

2    Building a  microarchitectural  description  lan- 
guage 

Contemporary superscalar microarchitectures employ 
tremendously aggressive strategies to mitigate dependencies 
and memory latency. Their complexity taxes current design 
techniques to the limit. The trend continues, as the size of 
design teams grows exponentially with each new generation 
of chip. 

To gain an appreciation for the complexity of modern mi- 
croarchitectures, take as an example the model of an instruc- 
tion reorder buffer (ROB) which occurs frequently in out-of- 
order microprocessors like the Pentium III. The function of 
the ROB is to maintain a pool of instructions, and to deter- 
mine dynamically which of them are eligible for delivery to 
an execution unit once their operands have been computed. 
This way, instructions are executed at the earliest possible 
moment. Furthermore, instructions are introduced spec- 
ulatively, based upon numerous successive branch predic- 
tions. Consequently, instructions that have previously been 
scheduled and executed must sometimes be rescinded when 
a branch is discovered to have been mispredicted. Thus the 
ROB must keep track of instructions up to the point that 
they can either be retired (committed) or flushed. 

Since some instructions following a branch may already 
have been executed when a branch misprediction is discov- 
ered, register contents are also affected. At a branch mis- 
prediction, register mapping tables must be modified to in- 
validate the contents of registers that contain results of re- 
scinded instructions. The contents of registers that are pos- 
sibly live must be preserved until after the branch has been 
resolved, thus increasing the complexity of the interaction 
between a ROB and the registers. 

In addition, there are all the issues of managing on-chip 
resources, of ensuring rapid and correct communication of 
results, of cache coherence and so on. It will get worse. 
The next generation of microarchitectures will address many 
more issues such as explicit instruction parallelism [13] and 
multiple instruction threads [29]. 

As if all these algorithms did not provide enough de- 
sign complexity, commercially viable microarchitectures are 
also subject to legacy requirements. For example Intel's 
Pentium III must deal with dozens of exception types to 
remain compatible with earlier versions of the X86 archi- 



tecture. Pentium III also struggles with the variable length 
of X86 instructions. It tries to fetch three each cycle, and 
it turns out that dynamically determining the length of in- 
structions before decoding is one of Pentium Ill's primary 
performance bottlenecks. Again, this type of problem is not 
going to go away. Intel's upcoming Merced processor will 
execute not only its new instruction set [8], but X86 as well 
[12]. 

With designs of this complexity, it is hard to imagine that 
designers will not stumble upon subtle concurrency bugs. 
The need for powerful and effective modelling and verifica- 
tion has never been greater. By couching microarchitecture 
modelling in terms of higher-level abstractions and empha- 
sizing the modularity of a design it is possible to regain 
control of the design space. This is what we have done. 
In conjunction with Intel's Strategic CAD Laboratory, we 
have developed Hawk as an executable modelling language 
embedded in Haskell. Hawk is very high level compared 
with other hardware description languages. Consequently, 
even complex microarchitecture models remain remarkably 
brief, allowing designers to retain a high level of intellectual 
control over the model. For example, the complete formal 
model of a speculative, superscalar, out-of-order microar- 
chitecture based on the Pentium III required less than 1000 
lines of code [5]. 

3    Lazy lists: adding signals to Haskell 

Effectively, Hawk is an embedding of Lustre-style signals [4] 
into Haskell. Signals model values that change over time, 
like wires in a microprocessor. Following O'Donnell [24], 
Srivas & Bickford [28], and many others, we implement sig- 
nals as lazy lists. The idea is very simple: the nth element 
of the list represents the value of the wire at clock tick n. 
Thus the value of each wire is a complete description of its 
behavior over time. This approach leads to circuit seman- 
tics with a definite denotational flavor. In contrast, state 
transition systems (another popular style) are much more 
operational in their nature. There are naturally advantages 
and disadvantages to each. 

To represent units with clocked inputs and clocked 
outputs we use functions from signals to signals, known 
as list transformers (or stream transformers). Com- 
binational circuits can be turned into clocked circuits 
simply by mapping them down their input lists. So 
if add:: (Int ,Int)->Int acts like a simple addition cir- 
cuit, then map add :: [(Int,Int)] -> [Int] is its clocked 
equivalent. 

The fundamental non-combinational circuit is the delay. 
The delay is what makes feedback loops in clocked circuits 
possible—without any delays, a feedback loop would just 
generate smoke! A delay is defined so that the (n + l)st 

element of the output is equal to the nih element of its in- 
put, with an initial value output for the very first clock tick. 
The implementation of delay :: a -> [a] -> [a] is sim- 
ply "cons". 

Some care is needed within this paradigm, however. 
Arbitrary use of list processing functions, especially those 
which discard elements, such as filter, can cause problems 
in that they may require infinite buffers to implement. To 
restrict the way in which a signal can be constructed or al- 
tered, we make the signal type abstract in Hawk and provide 
a basic set of manipulation functions that are known to be 
safe. 

newtype Signal a 

delay  ::   a -> Signal a -> Signal  a 
liftO  ::   a -> Signal a 
liftl :: (a -> b) -> Signal a -> Signal b 

liftO returns a constant signal; and liftl is just map. 
Later we will use the derived operator bundle, which takes 
a pair of signals, and produces a signal of pairs. Restrict- 
ing access to the implementation in this way gives the usual 
freedoms to provide alternative implementations, or even to 
refine the semantics somewhat. For example, we could im- 
plement signals as functions from the natural numbers to 
values. 

If the above signature seems to be missing something 
— it is. The rest comes from Haskell itself, in particular, 
lazy recursive definitions. You could say that the missing 
operator of the abstract type is a (lazy) fixpoint operator. 
Consider a resettable counter circuit like: 

[LIFT (+1)] 

which, in Hawk, we might model as: 

counter reset = out 
where 
next = delay 0  (liftl  (+1)  out) 
out    = mux reset  (liftO 0)  next 

Note the mutual recursion between signals. The laziness 
of Haskell is vital for this definition to have the intended 
meaning. 

One thing that is not missing is a way to observe a list 
by taking its head or tail. This is intentional. A circuit that 
was specified to take the tail of a list would be asking for an 
infinite buffer. We do allow signals to be viewed as lists for 
the purpose of viewing simulation results, but this operation 
is only provided for use at the top-level. 

4    Organizing microarchitectural abstractions with 
type classes 

The point of Hawk has been to build abstractions that in- 
crease the concision of microarchitectural models [5], and 
facilitate the verification process [22]. 

In order for microarchitectural abstractions to be rele- 
vant, they must be extraordinarily flexible in the types that 
they operate over. Instruction sets differ in variety of de- 
tails: size and type of data, number and types of registers, 
and the instructions themselves. Internally, machines may 
use other instruction sets. For example, the AMD K6[27] 
implements the X86 instruction set, but uses a RISC in- 
struction set within its execution core. 

We use type classes to facilitate the description of circuits 
that operate over all instruction sets. For example, the type 
of an ALU might be: 

alu (Instruction i,  Bits w)  =>  (i,w,w)   -> w 



This way alu can be used in a X86 model (where w is set 
to 32-bit words and i to X86 instructions) or a 64-bit RISC 
instruction set, like that of the Alpha. The Bits class is an 
extension of Haskell's Num class that adds operators related 
to word size, signedness, etc. The Instruction class cap- 
tures the common elements between different instructions 
sets. 

With common architectural characteristics captured 
with type classes, we are then able to build abstractions 
that help organize microarchitectural models. For example, 
transactions [1, 23] are a simple yet powerful grouping of 
control and data. A transaction is a machine instruction 
grouped together with its state. This state might include: 

• Operand values. 

• A flag indicating that the instruction has caused an 
exception. 

• A predicted jump target, if the instruction is a branch. 

Microarchitectures models that utilize transactions can then 
make decisions locally rather than with a seperate control 
unit. 

Hawk provides a library of functions for creating and 
modifying transactions. For example, bypass takes two 
transactions and builds a new transaction where the val- 
ues from the destination operands of the first transaction 
are forwarded to the source operands of the second. If i is 
the transaction: 

(r4,8)   <-  (r2,4)  +  (rl,4) 

and j is the transaction: 

rlO <-  (r4,6)  +  (rl,4) 

then bypass i j produces the transaction: 

rlO <-  (r4,8)  +  (rl,4) 

That is, bypass inserted i's more recent valuation of r4 into 
the destination operand of j. 

By parameterizing over the instances of finite words and 
registers: 

bypass   ::   (Bits w,  Register r)  => 
Trans  i r w -> Trans i r w -> Trans i r w 

bypass can be used in many contexts. Within our Pentium 
Ill-like microarchitectural model we use bypass on both in- 
structions with real register references and virtual register 
references (both are instances of the type class Register). 
In our Merced-like model [6], we use the same bypass with 
IA-64 instructions. 

5    Lazy state: using state-based components 

There has been debate in the Haskell community about the 
merits of strictness within the state monad. In this section 
we describe an application where a lazy state monad is the 
right thing. 

Some microarchitectural components, such as register 
files, are more naturally (and effeciently) presented as state 
transition systems than list transformers. Fortunately, we 
can easily embed state-based models into the list trans- 
former idiom using the lazy state monad and runST [19]. 

Imagine modelling a register file as an array which, on 
each clock tick, is both written to and read from. 

reg  ::  Register r => Signal  (r,w)  -> Signal r -> 
Signal w 

reg writes reads 
= runST  ( 

do { reg <- newArray   (minAddr,  maxAddr)   init 
;  loopST  (regFile reg)   (bundle writes reads) 
} 

) 

regFile  ::  STArray s Addr Val ->  ((Addr,Val),  Addr) 
-> ST s Val 

regFile reg  ((a,w),r) 
= do { writeArray reg a w 

;  readArray reg r 
} 

where loopST is a monadic map on signals: 

loopST  ::   (a -> ST s b)  -> Signal a 
-> ST s  (Signal b) 

The semantics of lazy state is as follows. The monadic 
structure sequentializes the operations of the monad but 
forces nothing. As the result of the state thread is de- 
manded, so execution proceeds, but in the order determined 
by the monadic sequentialization. Thus execution proceeds 
on demand, but some of that demand is transmitted through 
the state sequencer. 

The state within the scope of runST is completely hid- 
den from the outside world. Thus as far as the rest of the 
program is concerned, reg is completely pure, as indicated 
by its type. The encapsulation of the state occurs because 
of the type of runST. Inside the implementation of regFile, 
however, the situation is quite different. The array writes 
are "imperative", having effects immediately visible to sub- 
sequent reads. 

In the use of loopST above, the state machine is executed 
step by step, consuming its list input and generating its list 
output on the way. In particular, the loop construct did 
not attempt to execute the state machine completely before 
releasing the output list. It is this behavior we require of the 
state monad and, fortunately, though not officially a part of 
Haskell, most implementations provide it. 

6    Monitoring circuits with unsafePerformlO 

When embedding a language, one often needs "language 
primitives" that provide good things in bad ways. Fran for 
example, has a function : 

importBitmap  ::  Filename -> Bitmap 

which imports a bitmap file in the 10 monad but uses 
unsafePerformlO to treat the bitmap as a pure value. 

When using Hawk we find that one often wants to ob- 
serve the values flowing across a signal. Unfortunately, 
Haskell's semantic purity makes this viewing rather diffi- 
cult. Often, without re-coding a model, it is not possible to 
observe the signal. Therefore we provide the function: 

probe  ::  Filename -> Signal a -> Signal a 

As far as Hawk-level models are concerned, a probe is simply 
an identity. However, the external world receives a differ- 
ent view. Probes are fundamentally side-effecting, writing 
values to a file, even though they apparently have a pure 
type. Thus probes cannot be defined within Haskell-proper. 
Instead, they required some Haskell system hacking through 
the use of unsafePerformlO. 



probe name vals = zipWith (write name) [1..] vals 

write name clock val = unsafePerformlO 
do { h <- openFile name AppendMode 

; hPutStrLn h (show clock ++ ":" ++ outp val) 
; hClose h 
; return val 
} 

Notice that we are careful not to change the strictness of 
lazy lists. 

We have found that unsafePerformlO is a powerful fa- 
cility for building of domain-specific tools that observe, but 
do not affect the microarchitectural models. 

7    Verification in Hawk 

The past several sections have, one-by-one, demonstrated 
the usefulness of lazy lists, type classes, the state monad, 
and unsafePerformlO. In this section we discuss a particu- 
larly exciting application that requires all four features. 

Hawk provides tools that can be used to formally ver- 
ify properties of models. Suppose that we want to prove 
the following properties about the resettable counter from 
Section 3: 

1. when the reset line is low on the next clock cycle, the 
output is the value at the current cycle plus 1, 

2. and when the reset line is high at the current clock 
cycle, the output is zero. 

In Hawk, we might express these properties as follows. 
Assume that rO and rl are the values of the reset line at 
time t and t + \ respectively, and that n and m are the 
corresponding outputs. 

prop.counter 
where 

prop.one ft& prop.two 

prop.one = not rl ==> (n + 1 === m) 
prop.two = rO ==> (n === 0) 

The trick is to show that these properties hold for arbitrary 
values of rO and rl. To do that, we will use symbolic values 
for rO and rl, and symbolically simulate the circuit. 

The approach we take to symbolic simulation [7] is 
straightforward. Take a sufficiently polymorphic function, 
and instantiate it at a symbolic datatype. What we mean 
by a symbolic datatype is any datatype that is enriched 
with variables and additional term structure. For example, 
we have used the following datatype for symbolic simulation 
of simple arithmetic circuits. 

data Symbo a = 
Const  a 

I  Var String 
I  Plus   (Symbo a)   (Symbo a) 
I  Times   (Symbo a)   (Symbo a) 

The catch is that some care is required in making func- 
tions "sufficiently" polymorphic. This means that over the 
parts of the program that you wish to symbolically evaluate, 
you cannot use concrete types, because those types must be 
able to become symbolic. 

7.1    Fitting symbolic simulation into Haskell 

In places, such as with the Num class, Haskell's prelude is 
remarkably amenable to symbolic simulation. In others it 
is not. As an example, consider Booleans. To capture the 
operations of both concrete and symbolic Booleans we have 
defined a class Boolean, which makes all the boolean oper- 
ators from the prelude abstract: 

class Boolean b where 
true  : 
false 

b 
:  b 

(&&)   : b -> b -> b 

(II)   : b -> b -> b 

(==» :  b -> b -> b 
not   :: b -> b 

We have also denned the class Eql, which is like the 
standard Eq class, except that it is also abstracted over the 
result type for equality, resulting in a multi-parameter type 
class: 

class Eql a b where 
(===)   ::  a -> a -> b 

Conditional expressions, too, must be abstract: 

class Mux c a where 
mux  ::   c -> a -> a -> a 

If the condition on which we branch is symbolic, then it is 
clear that the result must be symbolic as well. Hence there 
is a relationship between the type of the conditional, and 
the type of the result—just the sort of thing that multi- 
parameter type classes express well. 

To capture the common usage of conditional expressions, 
we make Bool an instance of Mux 

instance Mux Bool a where 
mux x y z = if x then y else z 

We can now employ many implementations of Booleans. 
In particular we can use binary decision diagrams (BDDs) 
[3], which implement semantic equality between symbolic 
boolean expressions in constant time. Using H/Direct [11], 
the state monad and unsafePerformlO, we have imported 
the CMU BDD package into Haskell. In the style of the 
modelling language of Voss [26], Hawk treats BDDs just like 
Booleans. But, thanks to type classes, a user can also choose 
not to use BDDs — so long as their choice is an instance of 
Boolean. 

7.2    Proving a property 

We now have the infrastructure to verify our properties. Our 
strategy is to simulate the counter with symbolic values on 
the reset line for the first two ticks, and then test the desired 
property on the first two outputs. We have made the initial 
value of the delay in the counter an additional parameter so 
that we can place a symbolic value there as well. This makes 
our test independent of the internal state of the counter, and 
thus makes it valid to test the properties only at the first 
two clock ticks. 

test   ::  BDD 
test ■ prop.one bb  prop_two 

where 
a = var "a" :: BDD_Vector8 



rO = var "rO" :: BDD 
rl = var "rl" :: BDD 
reset :: Signal BDD 
reset = rl 'delay' rl 'delay' false 
[n, m] = counter a reset 88® [0, 1] 
prop.one = not rl ==> (n + 1 === m) 
prop.two = rO ==> (n === 0) 

(888 is an operator for sampling a signal at the specified 
times.) By evaluating test we are proving that, for Boolean 
vectors of length 8, the counter circuit meets our specifica- 
tion. Using types more general that BDD_Vector8, we can 
prove the properties for counters of arbitrary size. 

8    Where Haskell and Hawk tangle 

For our domain, Haskell has turned out to be an excellent 
tool for experimenting with language design. However, in a 
few places, Haskell is not a perfect match. In this section 
we review our use of lazy lists, type classes, the lazy state 
monad, and unsaf ePerf ormlO and point to the hinderences 
that we have encountered. 

8.1 Lazy Lists 

In some cases Haskell is a little too generous. Our preferred 
semantics for signals is that of truly infinite, or coinductive, 
lists—i.e., not that of finite, infinite, and partially defined 
lists, as in Haskell. Any feedback loop that did not include 
at least one delay should be rejected as being ill-defined. 
Haskell, however, will stubbornly do its best to make sense 
of even such ill-defined definitions. Could Haskell do bet- 
ter? We have constructed a shallow embedding of Hawk in 
Isabelle [25], which is much less forgiving. In order to have 
Isabelle accept our recursive definitions we have had to de- 
velop a richer theory of induction over coinductive datatypes 
than previously available [21]. Using this theory, Isabelle is 
able to accept all the valid Hawk definitions that we have 
thrown at it, while rejecting the invalid ones. It would be 
useful if Haskell's type system could be extended to handle 
this—perhaps using unpointed types [20] to express valid 
coinductive definitions. 

8.2 Type Classes 

Because the type representing an instruction set must re- 
main abstract, we cannot directly pattern match on it. In- 
stead, the operations of the Instruction class provide pred- 
icates to identify common instructions such as nops, arith- 
metic ops, loads and stores and jumps. 

class   (Show i, Eq i)  => Instruction i where 
isNoOp  ::  i -> Bool 
isAddOp  ::  i -> Bool 
isSubOp   ::   i -> Bool 

If Haskell allowed arbitrary views of datatypes [30], then 
this could be handled much more nicely. 

8.3     The State Monad 

Haskell's syntactic support for state is not a perfect fit. 
First, Haskell has no way to declare storage statically, but 
this is exactly what is required. In the register example, the 

array is allocated at the beginning, and nothing else is al- 
located afterwards. Since silicon cannot be allocated on the 
fly, when we come to consider other interpretations of Hawk 
models, it would be useful to guarantee that the body of the 
state code did not affect the shape of the store, merely its 
contents. 

Secondly, in our microarchitectural models, the pattern 
loopST f (bundle xs ys) occurs often enough to want a 
language construct to describe it. Putting these ideas to- 
gether, we may ideally wish to write something like: 

reg writes reads 
= runST  (do {array reg  (minAddr, maxAddr)  = init 

;  loop  (w<-writes,  r<-reads) 
{    writeArray reg a w 
;    readArray reg r 
} 

} 
) 

8.4 Using unsafePerformlO 

Probes often work quite well, but there are some glitches. 
While we have been careful to preserve the semantics of 
Haskell in introducing probes, the semantics of probes are 
not really preserved by Haskell. Due to lazy evaluation, 
there's nothing to assure that probe output will appear in 
the order expected. The output of a probe at clock tick 9 
might be put in the file before the output of a probe at clock 
tick 7. Another, glitch is that, in a model, we are free to 
use a given unit more than once. But if that unit has an 
embedded probe, you will get the output of both probes in 
the file. This is not problematic, except that you have no 
way of identifying which output is from which probe. 

But these problems have less to do with the perhaps un- 
scrupulous nature of using unsaf ePerf ormlO, and more to 
do with a shortcoming in our overall design. In the sec- 
tion on future work, we will discuss an approach that will 
mitigate these problems. 

8.5 Symbolic simulation 

Our drive to make the entire Hawk library sufficiently 
polymorphic to perform symbolic evaluation has made us 
painfully aware of the shortcomings of Haskell's type class 
system in describing abstract data types. Haskell's module 
system can be used in a limited way to effect abstraction, 
as we have used for the signal type. But Haskell's module 
system is only intended as name space management, and is 
a poor match when you intend to use abstract types instan- 
tiated at many different types. 

The type class system at times works brilliantly. And 
what is most impressive is how well it has worked for us, 
as we use it for tasks far beyond its original intended use 
(simply as a system of overloading). However, the fit is not 
always perfect. One place is the lack of explicit control over 
instancing. One of the neat aspects of symbolic evaluation 
is that it allows us to take an existing executable model 
and verify properties of it, without changing the model at 
all. However, this does not work quite as well as it could 
because of limitations in the class system. Ideally, we would 
like to instantiate test above at different symbolic types. 
However, there is no good way to parameterize test by the 
types in question, without resorting to unpleasantries like 
adding dummy arguments.   The type of the counter data 



is purely an intermediate value in the definition of test. 
If we were not specific about the type of a, Haskell would 
consider the declaration ambiguous. Here we are limited 
by the type class system's restriction to type inference—the 
programmer is given no tool to resolve the ambiguity. Just 
as type inference can be augmented by type annotations 
to help the type system where it can't help itself, as with 
polymorphic recursion, we should be able to provide some 
sort of annotation to help Haskell resolve ambiguous uses of 
type classes. 

9    Future 'work 

9.1 Verification 

One of the unsatisfying aspects of the verification exam- 
ple is that it was necessary to make the internal state 
of the counter an explicit parameter. Doing this in a 
complex model would entail passing around a lot of extra 
parameters—just the sort of thing we'd like to avoid. Also, 
in forcing the model to be explicit about its internal state, it 
also undercuts one of the strengths of the signal transformer 
model that sets it apart from state transformer models, mak- 
ing it a sort of unwelcome hybrid. 

However, using ideas from Symbolic Trajectory Evalua- 
tion [14], we are currently working with symbolic domains 
that have a partial order structure. Symbolic simulation 
proceeds by starting with initial states set to bottom, with 
iteration of the model gradually adding more information. 

We are also currently applying symbolic simulation to 
simple pipelined microarchitectures to verify correctness 
of hazard avoidance, using a self-consistency checking ap- 
proach [16]. The technique is to simulate a stream of sym- 
bolic instructions two times. Let us assume that the pipeline 
has two stages. In the first case, we feed two symbolic in- 
structions followed by a no-op. In the second case, we feed 
the same two symbolic instructions separated by the no-op. 
The test is that the contents of the registers is the same after 
the third instruction, demonstrating that the hazard logic is 
working correctly. 

9.2 Elaboration monads 

One of the shortcomings of Hawk is that it has no explicit no- 
tion of elaboration separate from the semantics of the model. 
Elaboration is the process of translating a possibly higher- 
order Hawk circuit into a first-order description, such as the 
hardware languages VHDL or Verilog. This was not always 
the case. Initially, Hawk was similar to Lava [2], using a 
monad to capture circuit elaboration. The monad might 
be used to generate net-lists for the purposes of fabrication, 
or it might produce logical formulae for input to a theorem 
prover. For simulation, the monad is essentially the identity 
monad, since all we have to do is glue together functions. 
However, during simulation, the monad could also provide 
the service of, for example, splitting probes that get dupli- 
cated. 

One reason that we departed from an explicit monadic 
style is that the mutually recursive streams idiom that works 
so well is not supported by the do notation. What we pro- 
pose is to extend the do notation so that bindings are recur- 
sive. 

10    Acknowledgements 

For their contributions we would like to thank Mark Aa- 
gaard, Borislav Agapiev, Todd Austin, Robert Jones, John 
O'Leary, and Carl-Johan Seger of Intel Corporation; Tim 
Leonard and Abdelillah Mokkedem of Compaq/Digital Cor- 
poration; Simon Peyton Jones of Microsoft Corporation; 
Per Bjesse, Koen Claessen, and Mary Sheeran of Chalmers; 
Elias Sinderson of GlobalStar; and Dick Kieburtz, John 
Matthews, Nancy Day, Sava Krstic, Thomas Nordin, Tito 
Autrey, and Mark Shields of OGI. 

This research is supported in part by Intel, the Na- 
tional Science Foundation, the Defense Advanced Research 
Projects Agency, and Air Force Material Command. 

References 

[1] AAGAARD, M., AND LEESER, M. Reasoning about 
pipelines with structural hazards. In Second Interna- 
tional Conference on Theorem Provers in Circuit De- 
sign (Bad Herrenalb, Germany, Sept. 1994). 

[2] BJESSE, P., CLAESSEN, K., SHEERAN, M., AND SINGH, 

S. Lava: Hardware design in Haskell. In Interna- 
tional Conference on Functional Programming (Balti- 
more, July 1998). 

[3] BRYANT, R. E. Symbolic boolean manipulation with 
ordered binary decision diagrams. ACM Computing 
Surveys 24, 3 (1992). 

[4] CASPI, P., PILAUD, D., HALBWACHS, N., AND PLAICE, 

J. Lustre: A declarative language for programming 
synchronous systems. In Symposium on Principles 
of Programming Languages (Munich, Germany, Jan. 
1987). 

[5] COOK, B., LAUNCHBURY, J., AND MATTHEWS, J. 
Specifying superscalar microprocessors with Hawk. 
In Workshop on Formal Techniques for Hardware 
(Maarstrand, Sweden, June 1998). 

[6] COOK, B., LAUNCHBURY, J., MATTHEWS, J., AND 

KIEBURTZ, D. Formal verification of explicitly parallel 
microarchitectures, 1999. Submitted for publication. 

[7] DAY, N. A., LEWIS, J. R., AND COOK, B. Symbolic 
simulation of microprocessor models using type classes 
in Haskell. Submitted for publication. 

[8] DULONG, C. The IA-64 architecture at work. IEEE 
Computer 31, 7 (1998). 

[9] ELLIOTT, C. An embedded modeling language ap- 
proach to interactive 3D and multimedia animation. To 
appear in IEEE Transactions on Software Engineering 
(1999). 

[10] ELLIOTT, C, AND HUDAK, P. Functional reactive an- 
imation. In The International Conference on Func- 
tional Programming (Amsterdam, The Netherlands, 
June 1997). 

[11] FINNE, S., LEUEN, D., MEIJER, E., AND JONES, 

S. P. H/Direct: A binary foreign language interface 
for Haskell. In International Conference on Functional 
Programming (Baltimore, July 1998). 



[12: 

I«: 

[i< 

[i5: 

[ie: 

[17] 

[is: 

[19] 

[2o: 

[21 

[22: 

[23: 

[24; 

[25: 

[26] 

[27] 

[28: 

GWENNAP, L. First Merced patent surfaces. Micropro- 
cessor Report 11, 3 (1997). 

GWENNAP, L. Intel, HP make EPIC disclosure. Micro- 
processor Report 11, 14 (1997). 

HAZELHURST, S., AND SEGER, C.-J. H. Symbolic tra- 
jectory evaluation. In Formal Hardware Verification. 
Springer-Verlog, 1997. 

JONES, M. P. Qualified Types: Theory and Practice. 
PhD thesis, Department of Computer Science, Oxford 
University, 1992. 

JONES, R. B., SEGER, C.-J. H., AND DILL, D. L. Self- 
consistency checking. In Formal Methods in Computer- 
Aided Design (Palo Alto, California, 1996). 

JONES, S. P., AND MARLOW, S. Stretching the storage 
manager: weak pointers and stable names in Haskell, 
1999. Submitted for publication. 

LANDIN, P. J. The Next 700 Programming Languages. 
Communications of the ACM 9, 3 (March 1966), 157- 
164. 

LAUNCHBURY, J., AND JONES, S. P. Lazy functional 
state threads. In Programming Languages Design and 
Implementation (Orlando, Florida, 1994), ACM Press. 

LAUNCHBURY, J., AND PATTERSON, R. Parametricity 
and unboxing with unpointed types. In The Interna- 
tional Conference on Functional Programming (1996). 

MATTHEWS, J. Recursive function definition over coin- 
ductive types. Submitted for publication. 

MATTHEWS, J., AND LAUNCHBURY, J. Elementary mi- 
croarchitecture algebra. In International Conference on 
Computer-Aided Verification (Trento, Italy, July 1999). 

MATTHEWS, J., LAUNCHBURY, J., AND COOK, B. 
Specifying microprocessors in Hawk. In IEEE Interna- 
tional Conference on Computer Languages (Aug. 1998). 

O'DONNELL, J. From transistors to computer architec- 
ture: Teaching functional circuit specification in Hydra. 
In Symposium on Functional Programming Languages 
in Education (July 1995). 

A Generic Theorem Prover. 

[30] WADLER, P. Views: a way for pattern matching to 
cohabit with data abstraction. In H'th ACM Sympo- 
sium on Principles of Programming Languages (Mu- 
nich, Germany, January 1987). 

PAULSON,  L.    Isabelle: 
Springer-Verlag, 1994. 

SEGER, C.-J. Voss - a formal hardware verification sys- 
tem. Tech. Rep. 93-45, University of British Columbia, 
1993. 

SHRIVER, B., AND SMITH, B. The Anatomy of a High- 
Performance Microprocessor: A Systems Perspective. 
IEEE Computer Society Press, 1998. 

SRIVAS, M., AND BlCKFORD, M. Formal verification of 
a pipelined microprocessor. IEEE Software 7, 5 (1990). 

[29] TULLSEN, D. M., EGGERS, S. J., EMER, J. S., LEVY, 
H. M., Lo, J. L., AND STAMM, R. L. Exploiting 
choice: Instruction fetch and issue on an implementable 
simultaneous multithreading processor. In 23rd An- 
nual International Symposium on Computer Architec- 
ture (Philadelphia, PA, May 1996). 



Elementary Microarchitecture Algebra 

John Matthews and John Launchbury 

Oregon Graduate Institute, 
P.O. Box 91000, Portland OR 97291-1000, USA 

{johnm,jl}Qcse.ogi.edu 
http://www.cse.ogi.edu/PacSoft/Hawk 

Abstract. We describe a set of remarkably simple algebraic laws gov- 
erning microarchitectural components. We apply these laws to incremen- 
tally transform a pipeline containing forwarding, branch speculation and 
hazard detection so that all pipeline stages and forwarding logic are re- 
moved. The resulting unpipelined machine is much closer to the reference 
architecture, and presumably easier to verify. 

1    Introduction 

Transformational laws are well known in digital hardware, and form the basis of 
logic simplification and minimization, and of many retiming algorithms. Tradi- 
tionally, these laws occur the gate level: de Morgan's law being a classic example. 
In this paper, we examine whether corresponding transformational laws hold at 
the microarchitectural level. 

A priori, there is no reason to think that large microarchitectural components 
should satisfy any interesting algebraic laws, as they are constructed from thou- 
sands of individual gates. Boundary cases could easily remove any uniformity 
that has to exist for simple laws to be present. Yet we have found that when 
microarchitectural units are presented in a particular way, many powerful laws 
appear. Moreover, as we demonstrate in this paper, these laws by themselves are 
powerful enough to allow us to show equivalence of pipelined and non-pipelined 
microarchitectures. 

We have used this algebraic approach to simplify a pipelined microarchi- 
tecture that uses forwarding, branch speculation and pipeline stalling for haz- 
ards. The resulting pipeline is very similar to the reference machine specification 
(i.e. no forwarding logic), while still retaining cycle-accurate behavior with the 
original implementation pipeline. The top-level transformation proof is simple 
enough to be carried out on paper, but we have mechanized enough of the theory 
in the Isabelle theorem prover [20] to have verified it semi-automatically, using 
Isabelle's powerful rewriting engine. 

Interestingly, both circuits and laws can be expressed diagrammatically. A 
paper proof (transformation using equivalence laws) proceeds as a series of mi- 
croarchitecture block diagrams, each an incrementally transformed version of the 
last. The laws often have a geometric flavor to them, such as laws to swap two 



components with each other, or laws to absorb one component into another. We 
find this diagrammatic approach an excellent way to communicate proofs. 

For us, the most time-consuming part of this technique has been discovering 
the local behavior-preserving laws. It is our experience that these laws are much 
easier to discover when one uses the right level of abstraction. In particular, 
we encapsulate all control and dataflow information concerning a given instruc- 
tion in the pipeline into an abstract data type called a transaction [1,17]. We 
have found that not only do transactions reduce the size of microarchitecture 
specifications, they also provide enough "auxiliary" state information to make 
law-discovery practical. 

The rest of the paper gives a brief introduction to our specification language, 
and then discusses many of the laws we have discovered. We then show their use 
by applying the laws in a proof of equivalence between two microarchitectures. 
While space constraints prohibit us from giving the complete proof, the top-level 
proof is sketched diagrammatically in [16]. 

2    Specifying a Pipelined Microarchitecture 

We specify microarchitectures using the Hawk language [4,17]. Hawk allows us 
to express modern microarchitectures clearly and concisely, to simulate the mi- 
croarchitectures, either directly with concrete values, or symbolically, and pro- 
vides a formal basis for reasoning about their behavior at source-code level. 
Currently Hawk is a set of libraries built on top of the pure functional language 
Haskell, which is strongly typed, supports first-class functions, and infinite data 
structures, such as streams [8,21]. It is this legacy that led us to look for trans- 
formation laws in the first place: one often-cited benefit of purely functional 
programs is that they are amenable to verification through equational reason- 
ing. We wanted to see if such algebraic techniques scaled up to microarchitectural 
verification. 

2.1    Hawk Signals 

Hawk is a purely declarative synchronous specification language, sharing a se- 
mantic base similar to Lustre[7]. The basic data structure underlying Hawk is 
the signal, which can be thought of as an infinite sequence of values, one per 
clock cycle, and circuits are pure functions from input signals to output signals. 
The elements of a signal must belong to the same type. 

We use a notion of transactions to specify the immediate state of an en- 
tire instruction as it travels through the microprocessor [1]. A transaction is a 
record with fields containing the instruction's opcode, source register names and 
values, and the destination register name and its value, plus any additional in- 
formation, like the speculative branch target PC for each branching instruction. 
A microarchitecture is a network of components, each of which processes signals 
of transactions. 



Figure 1 shows the diagram of a simple one-stage microarchitecture, built out 
of transaction signal processors. Each component incrementally assigns values to 
various transaction fields, based on the component's internal state (if any) and 
the values of transaction fields assigned by earlier components. A textual Hawk 
specification of this circuit consists of set of mutually-recursive stream equations 
between the components. However, in this paper we will represent Hawk circuits 
as diagrams. 

For example, the regFile 
component has two transac- 
tion signal inputs and one 
transaction signal output. At 
a given clock cycle, the first 
input (called regFileln in 
Figure 1) contains a trans- Fig. 1. One-stage pipeline, 
action whose opcode and reg- 
ister name fields have been initialized, but whose value fields have all been zeroed 
out. The second input (called writeback) contains the completed transaction 
from the previous clock cycle. The regFile component first updates its internal 
register file state, based on the destination register name and value fields of the 
writeback input. It then fills in the source operand value fields of the regFileln 
transaction based on the corresponding operand register names and the updated 
register file, and outputs the filled in transaction, all within the same clock cycle. 

The alu component examines the opcode and source operand value fields of 
the transaction output by regFile. If the opcode is an ALU operation (which 
include branch instructions), the alu component computes the appropriate re- 
sult, assigns the result to the destination operand value field of the transaction, 
and outputs the transaction along the memln wire, again within the same (long) 
clock cycle. If the opcode is not an ALU operation, the alu component outputs 
the transaction unchanged. 

The mem component behaves similarly for memory load and store operations. 
Like the regFile component, the mem component has internal state, representing 
the contents of data memory at each clock cycle. This state is updated and 
referenced based on the transactions sent to the mem component. Just as with 
the alu component, all memory and transaction updating occurs within the 
same clock cycle. The mem component sends the completed transaction to a delay 
component (represented in our diagrams as a shaded box), to make it available to 
the ICache and regFile components in the next clock cycle. These transactions 
also become the output of the entire microarchitecture, as is shown by the right- 
most arrow. The initial value output by the delay component is the default 
transaction nopTrans, which represents an "inert" transaction which behaves 
like a NOP instruction, but does not affect the ICache's program counter. 

The ICache component produces new transactions, based on the value of the 
current program counter and the contents of program memory (the instruction- 
set architectures we consider have separate address spaces for instructions and 
data). Both the current PC and the instruction memory contents are internal 



to ICache. The ICache takes on its writeback input the completed transaction 
from the previous clock cycle. The ICache examines the transaction for branches 
that have been taken. When it finds such an instruction, it modifies its internal 
PC accordingly and starts fetching transactions from the branch target address. 
The ICache has as output a signal of transactions representing the newly-fetched 
instructions. Each transaction's source and destination operand values are ini- 
tialized to zero, since the ICache doesn't know what values they should have. 
The other pipeline components will fill in these fields with their correct values. 
The ICache has a second input, called stall, which is a signal of Boolean values. 
On clock cycles where stall is asserted, the ICache will output the same trans- 
action as it did on the previous clock cycle. In this simple microarchitecture, 
stall is always false. In more complex pipelines, the stall signal is typically 
asserted when the pipeline needs to stall due to a branch misprediction. 

For more complex pipelines, we also allow the ICache to perform branch 
prediction, based on an internal branch target buffer. When performing branch 
prediction, the ICache will also annotate branch instruction transactions with the 
predicted branch target PC. A branchjnisp component (not shown in Figure 1) 
can locally compare the predicted branch target with the actual branch target 
to determine if a branch misprediction has occurred. 

3    Microarchitecture Laws 

F — 

Fig. 2.   Universal 
law 

circuit-duplication 

With any algebraic reasoning there 
need to be some ground rules. We take 
as fundamental the notion of referen- 
tial transparency or, in hardware terms, 
a circuit duplication law. Any circuit 
whose output is used in multiple places 
is equivalent to duplicating the circuit 

itself, and using each output once. This law is shown graphically in Figure 2. 
Because of the declarative nature of our specification language, every circuit 
satisfies this law. That is, it is impossible within Hawk for a specification of a 
component to cause hidden side-effects observable to any other component spec- 
ification. In many specification languages this law does not hold universally. For 
example, duplicating a circuit that incremented a global variable on every clock 
cycle would cause the global variable to be incremented multiple times per clock 
period, breaking behavioral equivalence. Hawk circuits can still be stateful, but 
all stateful behavior must be local and/or expressed using feedback. 

The next few sections introduce many other laws, some of which are specific to 
particular combinations of components, while others are quite widely applicable. 
Each instantiation of a law needs to be proved with respect to the specification 
of the circuit components involved. We have found induction and bisimulation 
to be the most useful ways of proving the laws in this paper, expressed as proofs 
in Isabelle. 



3.1    Delay Laws 

The delay circuit is a fundamen- 
tal building block of clocked cir- 
cuits, especially when combined with 
feedback. A feedback variant of the 
circuit duplication law shown in Fig- 

p F -Gf-p ^asa^ p[ G G - F G - 

Fig. 3. feedback rotation law 

ure 3, called the feedback rotation law, allows circuits to be split along feedback 
wires. This law is not universal, but it is valid for any circuit that does not 
contain zero-delay cycles (amongst others). Happily, all of the laws we discuss, 
including the feedback rotation law itself, preserve a well-formedness property: 
if a circuit contains no zero-delay cycles, then any transformed circuit will also 
have no zero-delay cycles. 

The time-invariance law (Fig- 
ure 4) is also nearly universal. A 
circuit is time-invariant if one can 
retime the circuit by removing the 
delays from all the inputs of the 
circuit and placing new delays on 
the circuit's outputs. Any combi- 
natorial circuit that preserves de- FiS-4- time-invariance law. 
fault values is automatically time-invariant, but so are stateful circuits like the 
register file and memory cache. Interestingly, the ICache is not. 

We use the above laws extensively to remove pipeline stages. If a pipeline 
stage is time-invariant, then we can move the pipeline registers (represented 
as delay circuits) from before the pipeline stage to afterwards. If subsequent 
pipeline stage are also time-invariant, then we can repeat the process, eventually 
moving all of the delay circuits to the end of the pipeline. However, forwarding 
logic between pipeline stages must still access the appropriate time-delayed out- 
puts of later pipeline stages. The feedback-rotation law polices this, and ensures 
that the appropriate time-delay is kept by forcing delays to be inserted on all 
feedback wires to the forwarding circuits. 

3.2    Bypasses and Bypass Laws 

The purpose of forwarding logic in a pipeline is to ensure that results computed 
in later pipeline stages are available to earlier pipeline stages in time to be 
used. Conceptually, the forwarding logic at each pipeline stage examines its 
current instruction's source operand register names to see if they match a later 
stage's destination operand register name. For every matching source operand, 
the operand value is replaced with the result value computed by the later pipeline 
stage. Non-matching source operands continue to use operand values given by 
the preceding pipeline stage. 



update 

Fig. 5. bypass circuit 

This conceptual logic can be implemented con- 
cisely using transactions. A bypass circuit (Figure 5) 
has two inputs, each a signal of transactions: The 
first input (inp) contains the transactions from the 
preceding pipeline stage. The second input (update) 
contains the transactions from a subsequent pipeline 
stage. The bypass circuit at each clock cycle com- 

pares the source operand names of the current inp transaction with the desti- 
nation operand names of the current update transaction. The output of bypass 
is identical to inp, except that source operands matching update's destination 
operand are updated. Bypasses arise frequently enough in pipeline specifications 
that we draw them specially, as diamonds with the update input connected to 
either the top or the bottom. 

Bypass circuits have many nice 
properties. Not only are they time- 

J^        /\ invariant and obey a kind of idem- 
potence (Figure 6), but they also 
interact closely with register files 
and various execution units. Fig. 6. bypass circuit idempotence law 

—• regFile regFile —► 

Fig. 7. register-bypass law 

The fundamental interaction be- 
tween a bypass and register file is 
shown in Figure 7. We call this the 
register-bypass law, and it is used 
repeatedly in eliminating forward- 
ing logic when simplifying pipelines. 
The law states that we can delay 

writing a value into the register file, so long as we also forward the value to be 
written, in case that register was being read on the same clock cycle. 

Initially we considered this law to be a theorem about register files, and 
accordingly we proved that it held for a number of different implementations. 
However, it is also tempting to view this law as an axiom of register files. In 
effect, by using the law repeatedly from right to left, we obtain a specification 
for how the register file must behave for any time prefix. 

Hazard - Bypass Law Another bypass law permits the removal of bypasses 
between execution units. It is often the case that after retiming all delay circuits 
to the end of a pipeline, two execution units in a pipeline (such as an ALU 
unit and a Load/Store unit) are connected with one-cycle feedback loops. Each 
bypass circuit is forwarding the outputs of an execution unit to the inputs of 
that same execution unit, one clock cycle later. 

If the upstream pipeline stages can guarantee that there is no hazard between 
successive transactions, then the double feedback is equivalent to the single feed- 



—»no haz 

back circuit shown at the bottom of Figure 8. This (conditional) identity is called 
the hazard-bypass law. 

To be more concrete, suppose 
execl is the ALU and exec2 the 
memory cache. Then an ALU-mem 
hazard arises if a transaction which 
loads a register value from memory 
is immediately followed by an ALU 
operation which requires that reg- 
ister's value. Under these circum- 
stances the two feedback loops would 
give different results. Under all other 
circumstances the two circuits are 
equivalent. We express this condi- 
tional equivalence using the no_haz Fig. 8. hazard-bypass law 
component. It is an example of a 
projection component and is discussed in the next section. 

t 
no_haz -6- execl exec2 

3.3    Projection Laws 

Many laws, like the hazard-bypass law above, require that the input signals 
satisfy certain properties, and commonly, we may know that the output signal 
of a given component always satisfies a particular property. We can capture this 
knowledge of properties using signal projections. 

A signal projection is a component with one input and one output. As long 
as the input signal satisfies the property of interest, the component acts like an 
identity function, returning the input signal unchanged. However, if the input 
does not satisfy the property we are interested in, the projection component 
modifies the input signal in some arbitrary way so that the property is satisfied. 

Let us consider an example. For the hazard-bypass law we are interested in 
expressing the absence of ALU-mem hazards in a transaction signal. We reify 
this property as a no_haz projection. On each clock cycle, the no Jiaz component 
compares the current input transaction with the previous input transaction. If 
there is no ALU-mem hazard between the two transactions, then the current 
transaction is output unchanged. If a hazard does exist, then no_haz will instead 
output nopTrans, which is guaranteed not to generate a hazard (since nopTrans 
contains no source operands). 

Where do projections come from? After all, they are not the sort of compo- 
nent that microarchitectural designers introduce just for fun. 

Fig 9 provides an example of a law which "generates" a projection. The 
hazard-squashing logic guarantees that its output contains no hazards, and this 
is expressed in that the circuit is unchanged when the noJiaz component is 
inserted on its output. 

(The hazard component outputs a Boolean on each clock cycle stating whether 
its two input transactions constitute a hazard. The kill component takes a 
transaction signal and a Boolean signal as inputs. On each clock cycle, if the 



i-»    hazard   «—i 

Boolean input is false, then kill outputs its input transaction unchanged. If the 
Boolean input is true, then kill outputs a nopTrans, effectively "killing" the 
input transaction.) 

To be useful, a pro- 
jection component needs 
to be able to migrate from 
a source circuit that pro- 
duces it (such as the cir- 
cuit in Figure 9) to a tar- 
get circuit that needs the 
projection to enable an 
algebraic law (such as the 

kill 

-*   hazard 

<z±s V 

—»   kill   - —i—» no_haz - 

Fig. 9. Hazard-squashing logic guarantees no haz- 
ards 

hazard-bypass law). Thus a projection component must be able to commute with 
the intervening circuits between the source and the target circuit. Well-designed 
projections commute with many circuits. For instance, the no_haz projection 
commutes with bypass, alu, mem, and regFile components. It also commutes 
with delay components (that is, no_haz is time-invariant). 

Projections are also convenient for expressing the fact that a component 
only uses some of the fields of an input transaction. For instance, the hazard 
component only looks at the opcode, source, and destination register name fields 
of its two input transactions. We can create a projection called proj.ctrl that 
sets every other field of a transaction to a default value, and prove a law stating 
that the hazard component is unchanged when proj.ctrl is added to any of 
its inputs. We can then show that proj_ctrl commutes with other components, 
such as bypasses and delays. This allows us to move the input wires to hazard 
across these other components, which is sometimes necessary to enable other 
laws. Similarly, the proj.branch_info projection allows us to move ICache and 
branch-misp component inputs. 

4    Transforming the Microarchitecture 

The laws we have been discussing can be used for aggressively restructuring 
microarchitectures while retaining equivalence. We have used them to simplify 
several pipelined microarchitectures with a view to verification. The example 
we present here contains three levels of forwarding logic, resolves hazards by 
stalling the pipeline, and performs branch speculation. The block diagram for 
this microarchitecture is shown in Figure 10. 

By using just algebraic laws, we have been able to reduce most of the com- 
plexity, leaving essentially an unpipelined microarchitecture. We are currently 
implementing the algebraic laws as a rewrite system in Isabelle. For this paper 
we describe our top-level rewrite strategy informally. 

Retiming We first remove all delay circuits from the main pipeline path. We 
accomplish this by repeatedly applying the time-invariance law, and by splitting 
delays along wires through the circuit duplication and feedback rotation laws. 



branch_misp 

I? 
ICache -» regFile 

I-*  hazard *—i 

T 

Fig. 10. Microarchitecture before simplification 

Move control wires Next, we move all wires not directly involved with for- 
warding logic to either before or after all of the bypass circuits. This is to enable 
the hazard-bypass laws, which we apply in a later step. We move the wires by in- 
serting projection circuits and using the corresponding projection-commutativity 
laws. 

Propagate hazard information The hazard-bypass laws can only be ap- 
plied when there are no hazards between the affected stages. So we generate a 
no-hazard projection at the end of the dispatch stage (which is justified by a 
projection-absorption law applicable to the kill-circuit complex in that stage), 
and then move it between the first and second bypass circuits. We also use addi- 
tional properties of the proj_ctrl, kill, and regFile circuits (discussed in [16]) 
to swap the hazard/kill complex with the register file, so that the register-bypass 
law can be used more readily in the next step of the simplification. The circuit 
in Figure 11 shows the microarchitecture after this step has been completed. 
Notice that the ALU and memory units are now connected exactly as required 
for an application of the hazard-bypass law. 

i~*  hazan] «-, 
proj_hraneh_inlb | 

|proj_ctrl[ IPr"VC'r'- i    '-   'A     ' 
1 »   kill   —i-. reeRle -*^\-» 

+ 
HfriHa 

Fig. 11. Microarchitecture after the "propagate hazard information" step 



Remove forwarding logic We can now apply the hazard-bypass law to remove 
the bypass circuit just prior to the memory unit. We eliminate the other two 
bypass circuits by applying the register-bypass law twice. 

Cleanup The pipeline has now been simplified as much as possible, except that 
there are still some extra delay components as well as several unnecessary pro- 
jection circuits. We merge delay components, then move the projection circuits 
back to their places of origin and remove them using the projection laws in the 
opposite direction. 

brdnch_misp 

T 
*    kill    * regFile  *   alu    »  mem 

Fig. 12. Microarchitecture after simplification 

The final microarchitecture is shown in Figure 12. This circuit still outputs 
exactly the same transaction values, cycle-for-cycle, as the microarchitecture in 
Figure 10, but is considerably less complex. We can now apply conventional 
techniques to verify that this microarchitecture is a valid implementation of the 
ISA. 

5    Discussion 

5.1    Related work 

Hawk is built on top of the pure functional language Haskell, where algebraic 
techniques for transforming functional programs are routinely used for equiva- 
lence checking and verification [2,3,13] and for compilation and optimization [5, 
12]. Much of our work can be seen as an extension of these ideas. Hawk itself is 
very similar in flavor to Lustre [6] except that in Lustre signals are accompanied 
by additional clock information. The Hawk specification style follows from the 
work of Johnson[9], 0'Donnell[18], and Sheeran[25]. 

We have also been influenced by the algebraic techniques used in the re- 
lational hardware-description language Ruby [24]. Sizeable Ruby circuits have 
been successfully derived and verified through algebraic manipulation [10,11]. 
What distinguishes our work is our focus on microarchitectural units as objects 
of study in their own right. The Ruby research has emphasized circuits at the 
gate level. 

In terms of verification, our approach is most similar to two known tech- 
niques, called retiming [14,23,26] and unpipelining [15]. A circuit is retimed 



when the delay components of the circuit are repositioned, while the functional 
components are left unchanged, effectively through repeated applications of the 
time-invariance law. Typically, circuits are retimed to reduce the clock cycle 
time. In contrast, we retime circuits as part of a simplification process. In fact, 
we often use the time invariance law to increase cycle time! 

Unpipelining [15] is a verification technique where a pipelined microarchitec- 
ture, specified as a state machine, is incrementally transformed into a functionally- 
equivalent unpipelined microarchitecture. Unpipelining proceeds by repeatedly 
merging the last stage of a pipeline into the next to last stage, producing a mi- 
croarchitecture with one less stage on each iteration. On each iteration, the two 
microarchitectures are proven equivalent by induction over time. This is simi- 
lar to our approach, except that we use transactions to encapsulate and reuse 
many of the verification steps, and we only need to prove the equivalence of 
the portion of the microarchitecture being transformed, rather than the entire 
microarchitecture, on each iteration. On the other hand, Levitt and Olukotun's 
implementation of unpipelining is much more automated than our work up to 
now. 

Transactions were a key concept in allowing us to discover and formulate 
many of the algebraic laws of microarchitectural components. Unsurprisingly, 
the usefulness of transactions has been noticed before. Aagaard and Leeser 
used transactions to specify and verify hierarchical networks of pipelines [1], 
and Onder and Gupta have used a similar concept of instruction contexts as a 
core datatype in UPFAST, an imperative microarchitecture simulation language 
[19]. Further, Sawada and Hunt use an extended form of transactions in their 
verification of a speculative out-of-order microarchitecture [22]. Each transaction 
records two snapshots of the entire ISA state, before and after the instruction 
is executed. In their work, however, transactions are not part of the microarchi- 
tecture itself, but are constructed separately for verification purposes. 

5.2    Next steps in microarchitecture algebra 

As we have come to see it, the main principle of applying algebraic techniques 
to microarchitectures is to use geometric reasoning to move and absorb circuits, 
and to express that reasoning as local equalities whenever possible. Conditional 
equalities can be expressed using projections. 

Some care is required in the definition of basic components. We have striven 
to design the component circuits to satisfy as rich a variety of algebraic laws as 
possible, such as preserving default values, satisfying time-invariance, and so on. 
Sometimes we hit on the correct definitions immediately, but more commonly 
adapted the definitions over time admitting more and more laws. One example of 
this is in pipeline registers. Initially, we used conditional delays to act as pipeline 
registers, but since then have found it useful to separate clocked behavior from 
functional behavior, enabling the two dimensions to be manipulated separately. 

In some sense the components we now manipulate are not optimal in terms of 
transistor counts. In particular, many units receive and propagate information 
they are not interested in. However, much of this overhead can be removed 



automatically through a similar set of rewrite laws built around more primitive 
components than those presented in this paper. We plan to write this up in a 
subsequent paper. 

6    Acknowledgements 

We wish to thank Borislav Agapiev, Carl Seger, Byron Cook, Sava Krstic, and 
Thomas Nordin for their valuable contributions to this research. The authors 
are supported by Intel Strategic CAD Labs and Air Force Material Command 
(F19628-93-C-0069). John Matthews receives support from a graduate research 
fellowship with the NSF. 

References 

1. AAGAARD, M., AND LEESER, M. Reasoning about pipelines with structural haz- 
ards. In Second International Conference on Theorem Provers in Circuit Design 
(Bad Herrenalb, Germany, Sept. 1994). 

2. BIRD, R., AND WADLER, P. Introduction to Functional Programming. Prentice 
Hall International Series in Computer Science. Prentice Hall, 1988. 

3. BIRD, R. S., AND MOOR, O. D. Algebra of Programming. Prentice Hall, 1996. 
4. COOK, B., LAUNCHBURY, J., AND MATTHEWS, J. Specifying superscalar micro- 

processors in Hawk. In FTH'98, Workshop on Formal Techniques for Hardware 
and Hardware-like Systems (Marstrand, Sweden, June 1998). 

5. GILL, A., LAUNCHBURY, J., AND PEYTON JONES, S. L. A Short Cut to De- 
forestation. In FPCA '93, Conference on Functional Programming Languages and 
Computer Architecture (Copenhagen, Denmark, June 1993), ACM Press, pp. 223- 
232. 

6. HALBWACHS, N. Synchronous programming of reactive systems. Kluwer Academic 
Pub., 1993. 

7. HALBWACHS, N., LAGNIER, F., AND RATEL, C. Programming and verifying real- 
time systems by means of the synchronous data-flow programming language Lustre. 
IEEE Transactions on Soßware Engineering, Special Issue on the Specification and 
Analysis of Real-Time Systems (September 1992). 

8. HUDAK, P., PETERSON, J., AND FASEL, J. A gentle introduction to Haskell. 
Available at www.haskell.org, Dec. 1997. 

9. JOHNSON, S. D. Synthesis of Digital Systems from Recursive Equations. ACM 
Distinguished Dissertation Series. MIT Press, 1984. 

10. JONES, G., AND SHEERAN, M. Collecting butterflies. Tech. rep., Oxford University 
Computing Laboratory, 1991. 

11. JONES, G., AND SHEERAN, M. Designing arithmetic circuits by refinement in 
ruby. In Mathematics of Program Construction (1993), vol. 669 of LNCS, Springer 
Verlag. 

12. JONES, S. L. P., AND SANTOS, A. L. M. A transformation-based optimiser 
for Haskell. Science of Computer Programming 32, 1-3 (Sept. 1998), 3-47. 

13. LAUNCHBURY, J. Graph algorithms with a functional flavour. Lecture Notes in 
Computer Science 925 (1995). 

14. LEISERSON, C. E., AND SAXE, J. B. Retiming synchronous circuitry. Algorithmica 
6 (1991), 5-35. 



15. LEVITT, J., AND OLUKOTUN, K. A scalable formal verification methodology for 
pipelined microprocessors. In 33rd Design Automation Conference (DAC'96) (New 
York, June 1996), Association for Computing Machinery, pp. 558-563. 

16. MATTHEWS, J., AND LAUNCHBURY, J. Elementary microarchitecture algebra: Top- 
level proof of pipelined microarchitecture. Tech. Rep. CSE-99-002, Oregon Grad- 
uate Institute, Computer Science Department, Portland, Oregon, Mar. 1999. 

17. MATTHEWS, J., LAUNCHBURY, J., AND COOK, B. Specifying microprocessors 
in Hawk. In IEEE International Conference on Computer Languages (Chicago, 
Illinois, May 1998), pp. 90-101. 

18. O'DONNELL, J. From transistors to computer architecture: Teaching functional cir- 
cuit specification in Hydra. In Symposium on Functional Programming Languages 
in Education (July 1995). 

19. ÖNDER, S., AND GUPTA, R. Automatic generation of microarchitecture simulators. 
In IEEE International Conference on Computer Languages (Chicago, Illinois, May 
1998), pp. 80-89. 

20. PAULSON, L. Isabelle: A Generic Theorem Prover. Springer-Verlag, 1994. 
21. PETERSON, J., ET AL. Report on the programming language Haskell: A non-strict, 

purely functional language, version 1.4. Available at www.haskell.org, Apr. 1997. 
22. SAWADA, J., AND HUNT, W. A. Processor verification with precise exceptions and 

speculative execution. Lecture Notes in Computer Science 1427 (1998), 135-146. 
23. SAXE, J., AND GARLAND, S. Using Transformations and Verifications in Circuit 

Design. Formal Methods in System Design 4, 1 (1994), 181-210. 
24. SHARP, R., AND RASMUSSEN, O. An introduction to Ruby. Teaching Notes ID- 

U: 1995-80, Dept. of Computer Science, Technical University of Denmark, October 
1995. 

25. SHEERAN, M. (iFP, an Algebraic VLSI Design Language. PhD thesis, Program- 
ming Research Group, University of Oxford, 1983. 

26. SHEERAN, M. Retiming and slowdown in Ruby. In The Fusion of Hardware Design 
and Verification (Glasgow, Scotland, July 1988), G.J. Milne, Ed., IFIP WG 10.2, 
North-Holland, pp. 289-308. 



Recursive Function Definition 
over Coinductive Types 

John Matthews 

Oregon Graduate Institute, 
P.O. Box 91000, Portland OR 97291-1000, USA 

johiunQcse. ogi. edu 
http://www.cse.ogi.edu/"johnm 

Abstract. Using the notions of unique fixed point, converging equivalence re- 
lation, and contracting function, we generalize the technique of well-founded 
recursion. We are able to define functions in the Isabelle theorem prover that 
recursively call themselves an infinite number of times. In particular, we can 
easily define recursive functions that operate over coinductively-defined types, 
such as infinite lists. Previously in Isabelle such functions could only be de- 
fined corecursively, or had to operate over types containing "extra" bottom- 
elements. We conclude the paper by showing that the functions for filtering 
and flattening infinite lists have simple recursive definitions. 

1    Well-founded recursion 

Rather than specify recursive functions by possibly inconsistent axioms, several higher 
order logic (HOL) theorem provers[4,ll,14] provide well-founded recursive function 
definition packages, where new functions can be defined conservatively. Recursive 
functions are defined by giving a series of pattern matching reduction rules, and a 
well-founded relation. 

For example, the map function applies a function / pointwise to each element of 
a finite list. This function can be defined using well-founded recursion: 

map :: (a ->• ß) ->• a list -> ß list 

map / Q =0 
map f (x#xs) = (/ x) # (map f xs) 

The first rule states that map applied to the empty list, denoted by [], is equal to 
the empty list. The second rule states that map applied to a list constructed out of 
the head element x and tail list xs, denoted by x#xs, is equal to the list formed by 
applying / to x and map f to xs recursively. 

To define a function using well-founded recursion, the user must also supply a well- 
founded relation on one of the function's arguments1. A well-founded relation (<) 
is a relation with the property that there exists no infinite sequence of elements 
xi,X2,X3,X4,... such that 

. . . < Xi < X3 < x2 < Xi 

For each reduction rule, the recursive definition package checks that every recursive 
call on the right-hand side of the rule is applied to a smaller argument than on the 
left-hand side, according to the user supplied well-founded relation. 

1 Some well-founded recursion packages only allow single-argument functions to be defined. 
In this case one can gain the effect of multi-argument curried functions by tupling. 



In the case of map, we can supply the well-founded relation 

xs < ys = length xs < length ys 

which is true when the number of elements in the relation's left-hand list argument is 
less than the number of elements in the relation's right-hand argument. The definition 
of map contains only one recursive rule, and it is easy to prove that the xs argument 
of the recursive call of map is smaller than the (x#xs) argument on the left-hand side 
of the rule, according to this relation. In general, well-founded relations ensure that 
there are no infinite chains of nested recursive calls. 

2    Coinductive types and corecursive functions 

Although well-founded recursion is a useful definition technique, there are many re- 
cursive definitions that fall outside its scope. For instance, there is a non-inductive 
type of lazy lists in the Isabellefll] theorem prover, denoted by a Hist, that is the set 
of all finite and infinite lists of type a. The function Imap over this type is uniquely 
specified by the following recursive equations2: 

Imap / 0 = D 
Imap f (x#xs) = (f x) # (Imap f xs) 

One cannot define Imap using well-founded recursion since the length of an infinite 
list does not decrease when you take its tail. In fact, the expression 
Imap f (xi # X2 # x3 # ...) can be unfolded using the above rules to an infinite chain 
of recursive calls: 

Imap f(x1 #x2#x3#...) 

(fx1)#(lmapf(x2#x3 #...)) 

(/ *i) #(/ x2) # (Imap f(x3 #•••)) 

(/*i)#(/z2)#(/zs)# (Imap /(...)) 

Defining functions corecursively 

The a Hist type is an example of a coinductive type. Although there is no general 
induction principle for coinductive types, one can use principles of coinduetion to 
show that two coinductive values are equal, and one can build coinductive values 
using corecursion. 

In Isabelle's theory of lazy lists[12], for instance, one builds potentially infinite lists 
through the llist.corec operator, which has type ß -» (ß -» unit +(a*ß)) -> (a Hist). 
The llist.corec operator uniquely satisfies the following recursion equation: 

fO, if gb = In\() 
9 ~ \ (x # (llist.corec b' g)), if g b = Inr (x, b') 

The llist.corec operator takes as arguments an initial value b and a function g. When 
g is applied to b, it either returns Inl (), indicating that the result list should be empty, 

2 Isabelle uses a different syntax for lazy lists than for finite lists. In this paper we use the 
same syntax for both types. 



or the value Inr (x,b'), where x represents the first element of the result list, and b' 
represents the new initial value to build the rest of the list from. Function g is called 
iteratively in this fashion, constructing a potentially infinite list. 

Using llist.corec, we can define Imap corecursively as follows: 

Imap f xs = llist-corec xs (mapJiead f) 
where 

map-head  :: (a -> ß) -> a Hist -» (unit + (ß*a Hist)) 
map-head f xs = case xs of 

0 =>Inl() 
|   (x#xs')   => Im (fx,xs') 

One can then prove by coinduction that this definition satisfies /map's recursive equa- 
tions. Needless to say, this is not the most intuitive specification of Imap, and most 
people would prefer to specify such functions using recursion, if possible. In the re- 
mainder of the paper we will present a framework for defining functions such as Imap 
recursively. 

3    Solving recursive equations 

The basic steps required in this framework to show that a set of recursive equations 
is well defined are as follows: 

- Construct a single function F that characterizes the set of recursive equations. 
- Show that for any two different potential solutions supplied to F, F maps them 

to two potential solutions that are closer together, in a suitable sense. 
- Invoke the main result (Sect. 4.3) to show that the above property of F is suffi- 

cient to guarantee that there is a unique solution to the original set of recursive 
equations. 

In this section we deal with the first step. 

3.1    Unique fixed points 

We convert a system of pattern matching recursive equations into a functional form 
by employing a standard technique from domain theory[5,17]. We start by recasting 
the equations as a single recursive equation using argument destructors or nested 
case-expressions. For example, the recursive equations defining the Imap function are 
equivalent to the following single recursive equation: 

Imap f I = case I of 

D =>0 
| (x#xs)     =£■ (f x) # (Imap f xs) 

Given /, we can reify this pattern of recursion into a non-recursive function F of 
type (a Hist —>■ ß Hist) —> (a Hist —> ß Hist) that takes a functional parameter Imap.f: 

F lmap-f = XI. case / of 

D =»0 
I (x#xs)     => (/x)#(lmap-f xs). 

Using the recursive equations for Imap, it is easy to show that Imap f = F (Imap f). 
The value Imap f is called a fixed point of F. In general, an element x of type a is 
a fixed point of a function g of type a —t a if x = gx. A function may have many 
fixed points, or none at all. Considering g as a functional representation of a system 
of recursive equations, each fixed point of g represents a valid solution to the system. 
If the function g has exactly one fixed point x, then we can think of g as defining the 
value x, in a way that will be made precise shortly. 



Definition 1 A function f of type a —> a has a unique fixed point element x of type 
a if x — f x and 

Vyz-(y = fy)h(z = fz) —>y = z. 

We formalize this definition into a predicate of higher order logic: 

islIniqFix :: a -» (a -» a) —> bool 
isUniqFix x f =     x = f x A (Vyz.fy = f z —> y = z) 

To define elements using unique fixed points, we rely on Hubert's description operator 
(e): 

fix :: (Q -» a) -¥ a 
fix / = ex. is UniqFix x f 

The expression fix/ represents the unique fixed point of /, when one exists. The 
following lemma captures this fact: 

Lemma 1 If there exists an x such that is UniqFix x f holds, then 

x=fix/ = /(fix/) 

If / does not have a unique fixed point, then fix/ denotes an arbitrary value. 

3.2    Properties of unique fixed points 

As an aside, several nice properties hold when one can establish that a system of recur- 
sive equations has a unique solution. For example, unique fixed points can sometimes 
"absorb" functions applied to other fixed points. 

Lemma 2 Given functions F : a -> a, G : ß -» ß, f : a -» ß, and value x : a, such 
that x is a (not necessarily unique) fixed point of F, G has a unique fixed point, and 
foF = Gof, then fx = fixG. 

Proof We have fx = f(Fx) = (foF)x = (G o f)x = G(fx). Thus the value fx 
is a fixed point of G. But since fix G is the unique fixed point of G, then / x = fix G qed 

Unique fixed points can also be "rotated", in the following sense: 

Lemma 3 If the composition of two functions g : ß —t a and h : a -> ß has a 
unique fixed point fix (g°h), then hog also has a unique fixed point, and fix (goh) = 
g (fix (hog)). 

Proof Let b = fix (g o h). We first note that hb = h((g o h)b) = {ho g) (h b). Thus 
h b is a fixed point of h o g. Next we show that this fixed point is unique by showing 
that any two fixed points of h o g are equal. 

Suppose x and y are fixed points of hog. Then gx = g((hog)x) = (goh) (gx). 
Thus gx is a fixed point of g o h. But since goh has a unique fixed point, then 
g x = fix (g o h). Similarly, g y = fix (g o h), and so g x = g y. Applying h to both sides 
of this equality, we obtain h(gx) = h(gy), which is the same as (ho g)x = (ho g)y. 
Since both x and y are fixed points of ho g, we have x = y. 

We can now apply Lemma 2, setting F = hog, G = goh, f = g, and x = fix (hog), 
to conclude that g(fix(hog)) = fix(g o h) qed 

Although we will not use Lemma 2 or Lemma 3 in the remainder of the paper, 
lemmas such as these are useful for manipulating systems of recursive equations as 
objects in their own right. 



4    Converging equivalence relations and contracting functions 

While unique fixed points are a useful definition mechanism, it can be difficult to 
show that they exist for a given function. A direct proof usually involves constructing 
an explicit fixed point witness using other definition techniques, such as corecursion 
or well-founded recursion. Little effort seems to be saved. 

We propose an alternative proof technique, based on concepts from domain the- 
ory^, 17] and topology[l, 13] where one builds a collection of ever-closer approxima- 
tions to the desired fixed point, and show that the limit of these approximations exists, 
is a fixed point of the function under consideration, and is unique. The approximation 
process can be parameterized to some extent, and reused across multiple definitions 
that are "similar" enough. Furthermore these parameterized approximations can be 
composed hierarchically, yielding more powerful approximation techniques. 

4.1    Converging equivalence relations 

To make the notion of approximation precise, we need a way of stating how "close" 
two potential approximations are to each other. One approach would be to define a 
suitable metric space[l] and use the corresponding distance function, which returns 
either a rational or real number, given any two elements in the domain of the metric 
space. However, proving that a series of approximations converges to a limit point 
often requires one to reason about exponentiation and division over a theory of ratio- 
nal or reals. An alternative way to measure "closeness", which we call a converging 
equivalence relation (CER), instead only involves reasoning about well-founded sets, 
such as the set of natural numbers, or the set of finite lists. In many cases we can 
prove a unique fixed point exists by performing a simple induction over the natural 
numbers, something which all of the current HOL theorem provers support well. 

A converging equivalence relation consists of: 

— A type a, called the resolution space 
— A type ß, called the target space 
- A well-founded, transitive relation (<) over type a, called a resolution ordering 
- A three-argument predicate («) of type (a -> ß -4 ß -» bool), called an indexed 

equivalence relation. Given an element i of type a, and two elements x and y of 

type ß, we denote the application of («) to i, x and y as (x « y), and if this value 
is true, then we say that x and y are equivalent at resolution i. 

The resolution ordering (<) and indexed equivalence relation («) must satisfy the 
properties in Fig. 1, for arbitrary i,i' : a; x,y,z : ß; and / : a -» ß. Axioms (1), (2), 
and (3) state that («) must be an equivalence relation at each resolution i. Axiom (4) 
states that if a resolution i has no lower resolutions, then (PS) treats all target elements 
as equivalent at that resolution. Such resolutions are called minimal. There is always at 
least one minimal resolution (and perhaps more than one), since (<) is well-founded. 
Axiom (5) states that if two elements are equivalent at a particular resolution, then 
they are equivalent at all lower resolutions. Thus higher resolutions impose finer- 
grained, but compatible, partitions of the target space than lower resolutions do. 
Although no particular resolution may distinguish all elements, (6) states that if two 
elements are equivalent at all resolutions, then they are in fact equal. 

Axioms (7) and (8) deal with "limits" of approximations. First some terminology: 
a function f : a -+ ß from the space of resolutions to the target space of elements is 
called an approximation map. An approximation map / is convergent up to resolution 
i if for all resolutions j and j' such that j < j' < i, then (/ j) is equivalent at 
resolution j to (/ j'). Note that it is possible for (fi) itself not to be equivalent to 



X « X (1) 

x « y —► y « x (2) 
» i t .   . 

(Vj . -.(j < i)) —► x « y (4) 

x K y hi <i  —► x K y (a) 

(Vj . s « y) —> x = y (6) 

WJ' -j<j' < i —> (/i) « (//)) —► &-VJ <i.z* (fj)) (7) 

W,j'j<f —► (/J) * (//)) —► (3*.Vj.* £ (/j)) (8) 

Fig. 1. The CER axioms. Each of these axioms must hold for arbitrary i, x, y, and /. 

any of the lower-resolution (/ j)'s. An approximation map / is globally convergent if 
j 

for all resolutions j and j' such that j < j', then (/ j) « (/ j'). 
Axiom (7) states that if / is locally convergent up to resolution i, then there exists 

a limit-like element z that is equivalent at each resolution j < i to the corresponding 
(f j) approximation. Axiom (8) states that if / is globally convergent, then there 
exists a limit element z that is equivalent to each approximation (/ j) at resolution j. 

4.2    Examples of converging equivalence relations 

Discrete CER The simplest useful CER has as a resolution space a two-element 
type containing the values ± and T, with (J. < T), and a target space ß with («) 

defined such that (x & y) = True, and (x « y) = (x = y). Axioms (1) through (6) 
are easy to verify. Axiom (7) holds for any element. The limit element satisfying (8) 
is/T. 

Lazy list CER We can construct a converging equivalence equation for comparing 
coinductive lists by comparing the first i elements of two lazy lists li and I2 at a given 
resolution i. To perform the comparison, we make use of the Itake function, with type 
nat -> a Hist -> a list. The expression (Itake n xs) returns a finite list consisting of the 
first n elements of xs. If xs has fewer than n elements, then Itake returns the whole 
of xs. The Itake function can be defined by well-founded recursion on its numeric 
argument with the following recursive equations: 

Itake     0 xs     = Q 
Itake (n +1)       0       = D 
Itake (n + 1) (x # xs) = x # (Itake n xs) 

We then define the lazy list CER with the natural numbers as the resolution space, 
(a Hist) as the target space, the usual ordering on the natural numbers for (<), and 
(RS) defined as follows: 

xs RJ ys = (Itake i xs = Itake i ys). 

Axioms (1) through (3) hold trivially. The only minimal resolution in this CER is 0, 
and since (ItakeOxs) = Q, then (4) holds. If two lazy lists are equal up to the first 
i positions, then they are equal up to any i' < i position, so (5) holds. Axiom (6) 
reduces to the Take Lemma[12], which can be proved by coinduction. 



Axioms (7) and (8) require us to construct appropriate limit elements, given an 
approximation map. Both limit elements can be constructed by a single function, 
which we call llist-diag. For a given approximation map /, the limit elements may be 
of infinite length, so we define llist-diag by corecursion, using llist-corec: 

llist-diag f = Uist.corecO(nthElemf) 
where 

nthElem f n; flnl(), if Jdropn(/(n + l)) = 0 
\ Inr (x, n + 1), if Idrop n (f(n + 1)) = (x # xs) 

The helper function nthElem uses the Idrop function on lazy lists. The Idrop function 
has type nat -» (a Hist) -> (a Hist), and (Idrop i xs) removes the first i elements from 
xs, returning the remainder. Like Itake, it is defined by well-founded recursion on its 
numeric argument: 

Idrop     0 xs     =      xs 
Idrop (n +1)      D      =       D 
Idrop (n + 1) (x # xs) = Idrop n xs 

The overall action of llist-diag is to construct a so-called diagonal list from the 
approximation map /, where the nth element of the result list is drawn from the 
nth element of approximation / (n + 1), if the nth element exists. If the nth element 
does not exist (i.e., the length of /(n + 1) is less than n), then the result list is 
terminated at that point. This process is shown in Fig. 2. There are two possible 
cases. In Fig. 2-a, we see that the approximation map / converges to the finite list 
[x0, xi, x2, X3, xi\. In Fig. 2-b, the approximation map / is converging to the infinite 
list [x0,   Xi,   X2,  X3,  X4,   X5,   X§,    ■ ■ ■] 

f 0   =... 

f 1   =®J> 

f 2   = [x0> sxl 

f 3   = [xO, xl \x2> 

f 4   = [xO, xl x2> Sj3> 

f 5   = [xO, xl x2. x3> ■vri\ ... 

f 6   = [xO, xl x2, x3. x4>0 

f 7   = [xO, xl x2, 
• 
• 

x3. x4] 

f 0   =... 

f 1  =Vi> 
f 2   = [x0> sxl 

f 3   = [xO, xl \x2. 

f 4   = [xO, xl x2> Nj3, 

f 5   = [xO, xl x2, x3> \x4, 
f 6   = [xO, xl x2, x3, x4> SJi5?\... 
f 7   = [xO, xl x2. x3, 

• 
• 

x4, x5>sx6/\... 

(a) (b) 

Fig. 2. The llist-diag function constructs a limit list from an approximation mapping. In (a) 
the approximation mapping converges to a finite list; In (b) to an infinite list. 

It turns out that for any CER whose (<) relation is the less-than ordering on the 
natural numbers, the following property implies both (7) and (8): 

V/. (Vt .(/•)« (/ (i + 1))) —► (3a:. Vz.x I (/i)). 

With some work, one can show that this property holds for the lazy list CER by 
supplying llist-diag f as the existential witness element for x. 

4.3    Contracting functions 

In the theory of metric spaces, a contracting function is a function F such that for 
any two points x and y, Fx is closer to Fy than x is to y, given a suitable distance 
function. Banach's theorem states that all contracting functions over suitable metric 
spaces have unique fixed points. We can define an analogous notion over a CER: 



Definition 2 A function F is contracting over a CER given by (<) and («) if for 
all resolutions i and target elements x and y, 

(Vi'<i.xrzy)—> (Fx) « (Fy). 

Intuitively a function is contracting if, given two elements a; and y that are close 
enough together at all lower resolutions i' < i to satisfy the CER, but are potentially 
too far away at resolution i, then F maps them to two elements that are now close 
enough at resolution i. 

For example, the function consZero xs = (0#a;s) is contracting over the lazy list 
CER, since given any i and two lazy lists xs and ys, 

(W < i. Itake i' xs = Itake i' ys) —> Itake i (consZero xs) = Itake i (consZero ys). 

The main result of this paper is as follows: 

Theorem  A contracting function F over a CER has a unique fixed point. 

The proof is discussed in Sect. 7. For now, we would like to apply this theorem 
to define some simple recursive functions over lazy lists. 

4.4    Recursive definitions over coinductive lists 

To begin with, we can simplify the definition of a contracting function F over a CER 
when the (<) relation of that CER is the less-than relation over the natural numbers. 
In this case, Definition 2 reduces to 

Vixy.x&y —> (Fx) « (Fy). (9) 

Specializing this formula for the lazy list CER, we have that F is contracting on lazy 
lists if 

Vixy. Itake i x — Itake i y —> Itake (i + 1) (Fx) = Itake (i + l)(Fy). (10) 

Defining iterates Let us establish that the following recursive equation, defined 
over x and /, has a unique solution, and thus a definition: 

iterates = (x # (Imap f iterates)) (11) 

This equation builds the infinite list [x,fx,f(fx),...]. We first define the non- 
recursive function F that characterizes this equation: 

F iterates' = (x # (Imap f iterates')). 

and then show that it is a contracting function. To do this we rely on (10), and 
assume we have two arbitrary lazy lists xs and ys such that Itake ixs = Itake i ys. We 
now need to show that Itake (i + 1) (Fxs) = Itake (i + 1) (F ys). Using a process of 
equational simplification we are able to reduce the goal to the assumption, as follows: 

Itake (i + 1) (F xs) = Itake (i + 1) (F ys) 

O Itake (i + l)(i# (Imap f xs)) = Itake (i + 1) (x# (Imap f ys)) 

<=> Itake i (Imap f xs) = Itake i (Imap f ys) 

■<= Itake ixs = Itake i ys 



The simplification relies on the following facts, each proved by induction on i: 

(Hake (i + 1) (z # xs) = Hake (i + 1) (z # ys)) <£> (Itake i xs) = Hake i ys) 

(Itake i (Imap f xs) = Itake i (Imap f ys) <= (Itake i xs = Itake i ys) 

These facts illustrate a nice property of this proof: We did not have to expand the 
definitions of (#) or Imap during the simplification process, relying instead on an 
abstract characterization of their behavior with respect to Itake. This turns out to 
be the case for many functions, even recursive ones defined by contracting functions. 
In general we can often incrementally define recursive functions and prove properties 
about how they behave with respect to («), without having to expand the definitions 
of functions making up the body of the recursive definition. 

5    Composing converging equivalence relations 

The lazy list CER allows us to give recursive definitions of individual lazy lists, but 
we are often more interested in recursively defining functions that transform lazy 
lists. Fortunately, there are several CER combinators that allow us to build CERs 
over complex types, if we have CERs that that operate on the corresponding atomic 
types. 

Local and global limits When constructing a new CER C" out of an existing 
CER C, we usually have to show (7) and (8) hold for C by invoking (7) and (8) for 
C, to create the necessary limit witness elements. To make this process explicit, we 
use Hilbert's description operator (e) to create functions that return these witness 
elements, given an appropriate approximation mapping /: 

local Jimit :: (a ->■ ß) -¥ a -¥ ß 
j 

local.limit f i = (ez. Vj < i. z « (/ j)) (12) 

global.limit :: (a -»/?)-> ß 
j 

global-limit f = (ez. Vj. z w (/ j)) (13) 

We can use (7) and (8) to prove the basic properties we want local-limit and global-limit 
to have for any CER given by (<) and («): 

(Vj, / • j <j'<i^ (fj) I (fj')) -4 (Vj < i. (local-limit fi) I (f j)) 

(Vj, j' -j < j' —► (fj) « (fj')) —> (Vj. (global-limit f) & (f j)) 

Function-space CER The functions local-limit and global-limit allow us to con- 
cisely specify the limit elements of CER combinators. For example, given a CER C 
from resolution space a to target space ß given by (<) and («), we can construct a 
new function-space over C CER with the same resolution ordering (<), and a new 
indexed equivalence relation («') with type 
a  -+  (T -> ß)  -»  (T  -¥ ß)  -»   bool, defined as 

« i 
g «' h = Vx. (gx) « (hx). 

The limit elements satisfying (7) and (8) can be given as 

local .limit.fun fi = (Xx. local-limit (Xi .fix) i) 

global .limit .fun f — (Xx. global-limit (Xi .fix)) 



Given these limit-producing functions, is relatively easy to show that the function- 
space over C CER satisfies the CER axioms. 

5.1    Defining recursive functions with the function-space CER 

Denning lmap We can apply the function-space CER to define lmap recursively. 
The recursion equations for lmap are: 

lmap f      Q      =0 
lmap f (x#xs) = (f x) # (lmap f xs) 

We translate the equations into a non-recursive form (parameterized over /) 

F lmap' = (Xxs . case xs of 

D        =>0 
\{y#ys)=>{fy)#(lmap'ys)). 

We then need to show that fix F is the unique fixed point of F by proving that F is a 
contracting function on the function-space over lazy lists CER. By (9) we must show 

i (i+l) 
for arbitrary resolution i and functions g and h, that (g «' h —> (F g)   «'   (Fh)). 
Expanding definitions, we obtain 

i (i+l) 
<?«' h—>(Fg)   «'   (Fh) 

<S> (Vxs.gxs « hxs) —> (Vxs.(Fgxs)    «    (Fhxs)) 

•£> (V xs. Itake i (g xs) = Itake i (h xs)) —> 

(Vxs. Itake (i + l)(Fg xs) = Itake (i + l)(Fh xs)). 

So, to prove F is contracting we take an arbitrary resolution i and two arbitrarily 
chosen functions g and h such that (Vxs.Itakei(gxs) = ltakei(hxs)), and show for 
an arbitrary xs that Itake (i + 1) (Fgxs) = Itake (i + 1) (Fhxs). There are two cases 
to consider: 

case xs = []: 
Itake (i + 1) (Fgxs) = Itake (i + 1) (Fhxs) 

<&   Itake (i + l)(Fg\\) = Itake (i + l)(Fh 0) 
•«-   Itake (i + 1) (case fj of 

D        =*ü 
I (v#w)=>{fv)#(gv8)) = 

Hake (i + l) (case \\ of 
D        =>D 

I (y#ys)^(fy)#(hys)) 
•»   Itake (i + 1) Q = Itake (i + 1) 0 
<=>   True. 

case xs = (y#ys): 
Itake (i + 1) (Fgxs) = Itake (i + 1) (Fhxs) 

«■   Itake (i + 1) (Fg(y#ys)) = Itake (i + 1) (F h (y#ys)) 
<*   Itake (i + 1) (case (y#ys) of 

D        =>0 
I (y#ys)=>(fy)#(gys)) = 



Itake (i + 1) (case (y#ys) of 

D        ^0 
I (y#ys)=>(fy)#(hys)) 

&   Hake (i + 1) ((/ y) # (<7 ys)) = Hake (i + 1) ((/ y) # (/i ys)) 
&   Hake i (g ys) = Hake i (h ys) 
<£>   True {by assumption}. 

Given the definition of F and basic lemmas about Hake, Isabelle's high-level sim- 
plification tactics allow the above proof to be carried out in two steps. The proof 
completes in about a second on a 266MHz Pentium II. 

Defining läppend We can apply the function-space CER combinator repeatedly, to 
prove that multi-argument curried functions have unique fixed points. As a concrete 
example, the curried function läppend has type allist —> allist —► allist. It takes 
two lazy list arguments xs and ys and returns a new list consisting of the elements of 
xs followed by the elements of ys. The recursive equations for läppend are 

läppend      \\      ys = ys 
läppend {x#xs) ys = (a; # läppend xs ys) 

To prove that these equations have a unique solution, we apply the function-space 
CER combinator to the lazy list CER to obtain a new CER C. We then apply the 
function-space CER combinator again to C", obtaining a new CER C" with the usual 
less-than relation on nat for (<) and the following indexed equivalence relation («"): 

i 
g «" h = (Vxsys .Hakei {gxs ys) = ltakei(hxsys)). 

Next, we convert the recursive equations for läppend into a non-recursive function F: 

F läppend' = (Xxs ys . case xs of 
D =>ys 

|   (x #xs') =>• (x# {läppend' xs' ys))). 

By (9) we must show for arbitrary resolution i and functions g and h, that 

(Vxs ys . Hake i (g xs ys) = Hake i (h xs ys)) —> 
(Vxs ys . Hake (i + 1) (Fg xs ys) = Hake (i + l)(Fhxs ys)). 

So we take arbitrary i, xs, and ys, and prove 

Hake (i + 1) (F g xs ys) = Hake (i + 1) (F h xs ys) 

assuming we have (Vxs ys . Hake i (g xs ys) = Hake i (h xs ys)). There are two cases to 
consider, depending on whether xs is empty or not: 

case xs = \\: 

Hake (i + 1) (F g xs ys) = Hake (i + l)(Fh xs ys) 
<=>   Hake (i + 1) (FgQ ys) = Hake (i + l)(Fh\\ys) 
<&   Hake (i + 1) (case [] of 

D =*• ys 
|   (x # xs') =?> x # {g xs' ys)) = 

Hake (i + 1) (case \\ of 

D =*• ys 
|   (x#xs') => x#(hxs' ys)) 



<ä>   Itake (i + 1) ys = Itake (i + 1) ys 
<*•   True. 

case xs — (x#xs'): 

Itake (i + 1) (F gxs ys) — Itake (i + 1) (Fhxs ys) 
O   Itake (i + 1) (Fg(x#xs') ys) = Itake (i + 1) (Fh(x#xs') ys) 
•<=>   Itake (i + 1) (case (x#xs') of 

D =*• ys 
|  (x # xs') =$ x#(g xs' ys)) = 

Itake (i + 1) (case (x^xs1) of 

D        =*• ys 
|   (x#xs')=> x#(hxs'ys)) 

&   Itake (i + l)(x# (g xs' ys)) = Itake (i + 1) (z # (h xs' ys)) 
<^   Itake i (g xs' ys) = Itake i (h xs' ys) 
<*   True {by assumption}. 

Thus we can conclude that läppend has a unique fixed point definition. We were able 
to carry out this proof in Isabelle in three steps, again taking about a second of CPU 
time. 

5.2 Other CER combinators 

Cer combinators can also be defined over product and sum types. The lazy list CER 
can be generalized to work over any coinductive type that has a notion of depth, such 
as coinductive trees. A more powerful function-space CER is discussed in Sect. 6. 

5.3 Demonstrating equality between coinductive elements 

Converging equivalence relations can also be useful in showing that two elements of 
a target space are equal. Axiom (6) (restated below) says that to show two target 
elements x and y are equal, one simply needs to show they are equivalent at all 
resolutions j 

j 
(Vj .xmy) —> x = y. 

We can often demonstrate that x and y are equivalent at all resolutions by well- 
founded induction, since (<) is a well-founded relation. For example, given two arbi- 
trary lazy lists ys and zs, we can prove the following lemma about läppend by (simple) 
induction on i: 

Lemma 4 

Vxs. Itake i (läppend (läppend xs ys) zs) = Itake i (läppend xs (läppend ys zs)). 

Proof 
case i = 0: 

Take xs to be an arbitrary lazy list. Then 
Itake i (läppend (läppend xs ys) zs) = Itake i (läppend xs (läppend ys zs)) 

■O   Itake 0 (läppend (läppend xs ys) zs) = Itake 0 (läppend xs (läppend ys zs)) 

* 0 = 0 
O   True. 



case i = (k + 1): 
Induction hypothesis: 

Assume (Vis. Itake k (läppend (läppend xsys)zs) = 
Make k (läppend xs (läppend ys zs))) 

Take xs to be an arbitrary lazy list. Then 
Itake i (läppend (läppend xs ys) zs) = Itake i (läppend xs (läppend ys zs)) 

&   (Itake (k + 1) (läppend (läppend xs ys) zs) = 
Itake (k + 1) (läppend xs (läppend ys zs))) 

subcase xs = []: 
•£> (Itake (k + 1) (läppend (läppend [] ys) zs) = 

Itake (k + 1) (läppend Q (läppend ys zs))) 
•O (Itake (k + 1) (läppend ys zs) = 

Itake (k + 1) (läppend ys zs)) 
<3>True. 

subcase xs = (x # xs'): 
O (Itake (k + 1) (läppend (läppend (x # xs') ys) zs) = 

Itake (k + 1) (läppend (x # xs') (läppend ys zs))) 
<=> (Itake (k + 1) (läppend (x # (läppend xs' ys)) zs) = 

Itake (k + l)(x# (läppend xs' (läppend ys zs)))) 
<&■ (Itake (k + 1) (x # (läppend (läppend xs' ys) zs)) = 

Itake (k + 1) (x # (läppend xs' (läppend ys zs)))) 
& (Itake k (läppend (läppend xs' ys) zs) = 

Itake k (läppend xs' (läppend ys zs))) 
<£> True {by induction hypothesis}. 

This proof took four steps in Isabelle, and relied on the following facts about läppend, 
each proved in two steps by expanding läppend's recursive definition once and simpli- 
fying: 

läppend \\ys = ys 

läppend (x#xs) ys = x # (läppend xs ys) 

Given Lemma 4 and CER axiom (6) instantiated to the lazy list CER, we can then eas- 
ily show in one Isabelle step that läppend (läppend xs ys) zs = läppend xs (läppend ys zs). 

6    Defining functions with unbounded look-ahead 

The functions we have defined so far examine their arguments by performing at most 
one pattern match on a lazy list before producing an element of a result list. However, 
there is a class of functions that can examine a potentially infinite amount of their 
argument lists before deciding the next element to output. An example is the lazy 
filter function of type (a -» boot) -» a llist -» a Hist, which takes a predicate P and a 
lazy list xs, and returns a lazy list of the same type consisting only of those elements 
of xs satisfying P. A candidate set of recursion equations for this function might be 

IfilterPW =Q 
IfilterP (x#xs)   =lfilterPxs, if-.(Pa;) 
IfilterP (x#xs)  =x#(lfilterPxs),   if Pa; 

Sadly, this intuitively appealing set of equations does not completely define Ifilter. If 
Ifilter is given an infinite list xs, none of whose elements satisfy P, then the above 



equations do not specify what the result list should be. For example, the equations 
are satisfied if Ifilter returns in this case the infinite list [arb, arb,...], where arb is an 
arbitrary element of the appropriate type. In other words, the equations do not have 
a unique solution. 

Happily we can remedy the situation as follows: We define by induction over nat 
a predicate firstPelemAt of type (a ->■ bool) -» a Hist -¥ nat -> 600/. The expression 
(firstPelemAt P xs i) is true if xs has at least (i + 1) elements and i is the position of 
the first element of xs satisfying P. We can then define the predicate never of type 
(a -¥ bool) -> a Hist -¥ bool as 

never P xs = Vi. -^(firstPelemAt P xs i) 

which is true when there are no elements in xs satisfying P. If we modify the initial 
recursive equations as follows: 

Ifilter P xs = W, if never P xs 
Ifilter P (x^xs)   = Ifilter Pxs, if -'(never P xs) A -i(P x) 
Ifilter P (x^xs)  = £# (IfilterPxs),   if ->(neverPxs) A Px 

then the set of equations does indeed have a unique solution. This function is not 
computable, since the predicate never can scan an infinite number of elements, but 
it is nevertheless mathematically valid in HOL. The CERs described above are not 
powerful enough to prove this, but we can define a well-founded function-space CER 
combinator that is. Given a CER C with (<) of type a —> a —> bool and («) with 
type a -> ß -> ß -> bool, and another well-founded transitive relation (■<) of type 
T -> T —> bool, we define our new CER C" with (<') and («') as follows: 

(<') :: (Q * r) -> (a * r) -> bool 
(«') :: (a * r) -► (r -> ß) -> (r -> /?) -> 600/ 

(a',«') <' (a,t)     =a'<aV(a' = aA('-!t) 

5 «' /i =Va't'.((o',f)<'(o,*))V((a',t') = (a»*))—>(gt')&(ht') 

It is a fair amount of work to show that C" is in fact a CER, and space constraints 
force us to elide the details. 

Intuitively, however, C allows us to generalize well-founded recursion in the fol- 
lowing way: A well-founded recursive function is forced to have its argument decrease 
in size on every recursive call. With C", the function being defined is allowed a choice; 
it can either decrease the size of its argument when making a recursive call, or not 
decrease its argument size but then make sure the element it is returning is "better" 
than the element returned from its recursive call. 

In the case of functions returning lazy lists, a "better" lazy list is one that looks 
just like the lazy list returned by the recursive call, but with at least one extra element 
added to the front. 

For us to use C on Ifilter, we need to specify a suitable well-founded transitive 
relation (^). The relation we choose is one that holds when the first element satisfying 
P occurs sooner on the left-hand argument than on the right-hand argument: 

xs -< ys = firstPelemPxs < firstPelemPys 
where 

firstPelem P xs  =0, if never P xs 
= 1 + (ei. firstPelemAt P xs i), otherwise 

We arbitrarily decide that a list containing no P-elements is -<-smaller than any list 
with at least one P-element. 



When analyzing the revised recursive equations for Ifilter, if xs has no P-elements 
then we return immediately, otherwise xs has to have at least one P-element. If that 
element is not at the head of the list, then the tail of the list is -(-smaller than xs. If 
the first P-element is at the head of xs, then the tail of the list is not -«-smaller than 
xs, but the output list has one more element than the list returned by the recursive 
call. Thus we informally conclude that the Ifilter is uniquely defined. 

We have also proved this fact formally in Isabelle. After inductively proving various 
simple lemmas about firstPelemAt, never, and firstPelem, we were able to prove that 
Ifilter is uniquely defined in five steps. We first translated the recursive equations 
above into a contracting function F. We used C" prove that F is contracting, first by 
expanding the definition of F and simplifying, and then by performing a case analysis 
(no induction required!) on whether the nat component of the current resolution was 
equal to zero. It took Isabelle two seconds to perform the proof. 

Although we had to prove lemmas about firstPelemAt, never, and firstPelem, 
the proofs are not hard and it turns out we can reuse these results when defining 
other functions that perform unbounded search on lazy lists. For example, the Iflatten 
function takes a lazy list of lazy lists, and flattens all of the elements into a single 
lazy list. The Iflatten function can also be uniquely defined using never: 

Iflatten xss = \\, if never (\xs .xs ^ []) xss 
Iflatten (xs#xss) = läppend xs (Iflatten xss), otherwise 

The proof proceeds in Isabelle exactly as it does for Ifilter except that we perform 
one additional case analysis on whether xs = []. The proof takes three seconds to 
complete. 

7    Proof of the main result 

Although the proof of the main theorem is too lengthy to describe here, we will provide 
a rough outline. Given a CER with resolution space a, target space ß, well-founded 
relation (<), indexed equivalence relation («), and an arbitrary contracting function 
F of type ß -> ß, the technique will be to construct an approximation map apx F 
that converges globally to the desired fixed point. We then prove that this fixed point 
is unique by showing that any two fixed points of F are equal. 

The function apx of type (ß -» ß) -> a -¥ ß that builds an approximation map 
from a contracting function is defined by well-founded recursion on (<) as follows: 

apx Fi = F (local Jimit (cut (apx F) i) i) 
where 

cut fix = if x <i then /x else arbitrary. 

At each resolution i, the function apx uses local-limit to obtain the best possible 
approximation of fix F, given the approximations it has already computed at all lower 
resolutions. The result of calling local-limit may still not be close enough at resolution 
i, so apx maps the local limit through F, which will bring the result close enough. The 
helper function cut is used to ensure that the recursive call to apx F is only made at 
lower resolutions than i, ensuring well-foundedness. If local-limit attempts to invoke 
cut (apx F) i at any other resolution, then cut returns an arbitrary element instead. 

Once we have proved by well-founded induction that apx is well defined, the next 
step is to establish that apx F is convergent up to each resolution i. To do this we prove 
several lemmas, such as: if an approximation mapping / converges up to a local limit 
element z at resolution i, and also converges up to a local limit element z' at the same 
resolution, then z and z' are equivalent at all resolutions i' < i. With this, and the fact 



that F is contracting, we can show that if x « y, then Fx « Fy. We then eventually 
show for all resolutions i that if apx F converges up to local limit element apx F i at 

resolution i, then apxFi « F(apxFi). This lemma is the key to showing by well- 
founded induction over i that apa; F does in fact converge up to apx F i at resolution 

i, and is also used to show that global.limit (apx F) « F (global.limit (apx F)) at each 
resolution i, and are thus equal by (6). This result establishes that a fixed point exists 
for F. We then show that any two fixed points x and y of F are equivalent at all 
resolutions by well-founded induction, and thus are equal, again by (6). 

8    Conclusion 

Related work The support for and application of well-founded induction and gen- 
eral coinduction has seen wide acceptance in the HOL theorem proving community. 
The well-founded definition package TFL used in HOL98 and Isabelle was written by 
Slind[15]. It can handle nested pattern matching in rule definitions, nested recursion 
in function bodies, and generates custom induction rules for each definition[16]. The 
PVS theorem prover[14] also uses well-founded induction as a basic definitional prin- 
ciple. A general theory of inductive and coinductive sets in Isabelle was developed by 
Paulson[12], based on least and greatest fixed points of monotone set-transforming 
functions, as well as a package for defining new inductive and coinductive sets by user- 
given introduction rules. The package avoids syntactic restrictions in the introduction 
rules by reasoning about each rule's underlying set-transformer semantics. 

Paulson's Isabelle theories were applied by Frost[3] to formalize the static and 
dynamic semantics of a small functional language and prove that the two semantics 
were consistent with each other. Recursive functions are represented by infinitely 
nested environments, requiring consistency to be proved by coinduction. The language 
and proof, as well as the concept of coinduction as a variant of fixpoint induction, 
were introduced by Milner and Tofte[8]. 

A coinductive theory of streams (infinite-only lists) was developed by Miner[9] 
in the PVS theorem prover. Miner used this theory to model synchronous hardware 
circuits as corecursively-defined stream transformers. Using coinduction, he was able 
to optimize the implementation of a fault-tolerant clock synchronization circuit and 
a floating-point division circuit. In several cases a subcircuit was replaced by an 
optimized subcircuit, and the correctness of the replacement depended on non-trivial 
environmental assumptions in the surrounding circuit. Coinduction was used to verify 
the environmental assumptions and to show that the subcircuits were equivalent under 
the assumed environment. 

A well-known alternative to coinductive types is the mathematical framework 
of pointed complete partial orders and continuous functions, also known as domain 
theory[5,17]. This theory is supported by the HOLCF[10] object-logic in Isabelle, and 
also allows one to define infinite data structures such as lazy lists and trees. A wide 
variety of functions over these structures can then be recursively defined. The primary 
disadvantage of this approach is that one must add "extra" bottom-elements to the 
structures being defined. These extra elements are used to indicate that a function 
is non-terminating on its arguments. For example, the lazy filter function Ifilter can 
be defined recursively in HOLCF, but the expression Ifilter P xs returns ± instead of 
0 when xs is an infinite list containing no elements satisfying P. Also, only so-called 
admissible predicates can be reasoned about inductively in domain theory, and it can 
be quite challenging to prove that a desired predicate is admissible. A comparison of 
the HOLCF approach to several other encodings of lazy lists is presented by Devillers 
et al[2]. 



Metric spaces[13] and topologyfl] are another well-established definition mecha- 
nism. The notions of Cauchy sequences, complete metric spaces, and contractions 
inspired much of this work. We have not worked out the exact relationship between 
converging equivalence relations and Cauchy metric spaces; although one can con- 
struct a distance function for every CER based on the nat resolution space, it is not 
clear that distance functions can be always be constructed for more complex resolu- 
tion spaces. Also, the conditions under which a function F is contracting in a CER 
seem to be less restrictive than the corresponding conditions in a metric space. More 
importantly from a verification perspective, well-founded induction seems easier to 
apply in current theorem provers than does the continuous mathematics required for 
metric spaces. 

Current and future work We are currently using CERs to specify and reason 
about processor microarchitectures as recursively defined stream transformers. This 
work is part of the Hawk project[7], which is developing a domain-specific functional 
language for specifying, simulating, and reasoning about such microarchitectures at 
a high level of abstraction. We have been able to use CERs and the unique fixed 
point lemmas in Sect. 3.2 to develop a domain-specific microarchitecture algebra[6] in 
Isabelle, which we use to verify Hawk specifications. 

We have mechanized the theory of CERs in Isabelle and have been able to define 
interesting lazy functions recursively, such as zip, filter, flatten, and several microar- 
chitecture specifications. However, we did so by reasoning about unique fixed points 
directly. One possibility would be to write a package along the lines of TFL where 
users need only supply a system of pattern matching recursive equations and a CER. 
The package would then automate the unique existence proofs. 

We have not yet seriously explored nested recursion with CERs, but we would like 
to in the future. 

Although we have defined CERs over streams and lazy lists, many structures in 
language semantics and process algebras can be seen as coinductive trees. It would 
be interesting to define some of these structures recursively and reason about them 
inductively, as we did for läppend in Sect. 5.3. 

9    Acknowledgements 

We wish to thank Byron Cook, Sava Krstic, and John Launchbury for their valuable 
contributions to this research. The author is supported by a graduate research fellow- 
ship with the National Science Foundation, and grants from the Air Force Material 
Command (F19628-93-C-0069) and Intel Strategic CAD Labs. 

References 

1. BUSKES, G., AND VAN Roou, A. Topological Spaces: from distance to neighborhood. 
UTM Series. Springer, New York, 1997. 

2. DEVILLERS, M., GRIFFIOEN, D., AND MüLLER, O. Possibly infinite sequences in the- 
orem provers: A comparative study. In Theorem Proving in Higher Order Logics: 10th 
International Conference, TPHOLs '97 (Murray Hill, NJ, Aug. 1997), vol. 1275 of LNCS, 
Springer-Verlag, pp. 89-104. 

3. FROST, J. A case study of co-induction in Isabelle. Tech. Rep. 359, University of 
Cambridge, Computer Laboratory, Feb. 1995. Revised version of CUCL 308, August 
1993. 

4. GORDON, M. J. C, AND MELHAM, T. F. Introduction to HOL: A theorem proving 
environment for higher order logic. Cambridge University Press, 1993. 



5. GUNTER, C. A. Semantics of Programming Languages: Structures and Techniques. Foun- 
dations of Computing Science. The MIT Press, 1992. 

6. MATTHEWS, J., AND LAUNCHBURY, J. Elementary microarchitecture algebra. To appear 
in CAV99, International Conference on Computer Aided Verification, July 1999. 

7. MATTHEWS, J., LAUNCHBURY, J., AND COOK, B. Specifying microprocessors in Hawk. 
In IEEE International Conference on Computer Languages (Chicago, Illinois, May 1998), 
pp. 90-101. 

8. MILNER, R., AND TOFTE, M. Co-induction in relational semantics. Theoretical Com- 
puter Science 87 (1991), 209-220. 

9. MINER, P. Hardware Verification Using Coinductive Assertions. PhD thesis, Indiana 
University, 1998. 

10. MüLLER, O., NIPKOW, T., v. OHEIMB, D., AND SLOTOSCH, O. HOLCF = HOL + 
LCF. To appear in Journal of Functional Programming, 1999. 

11. PAULSON, L. Isabelle: A Generic Theorem Prover. Springer-Verlag, 1994. 
12. PAULSON, L. C. Mechanizing coinduction and corecursion in higher-order logic. Journal 

of Logic and Computation 7, 2 (Apr. 1997), 175-204. 
13. RUDIN, W. Principles of Mathematical Analysis, 3 ed. McGraw-Hill, 1976. 
14. RUSHBY, J., AND STRINGER-CALVERT, D. W. J. A less elementary tutorial for the PVS 

specification and verification system. Tech. Rep. SRI-CSL-95-10, SRI International, 
Menlo Park, CA, June 1995. Revised, July 1996. 

15. SLIND, K. Function definition in higher order logic. In Ninth international Conference 
on Theorem Proving in Higher Order Logics TPHOL (Turku, Finland, Aug. 1996), J. 
Von Wright, J. Grundy, and J. Harrison, Eds., vol. 1125 of Lecture Notes in Computer 
Science, Springer Verlag, pp. 381-398. 

16. SLIND, K. Derivation and use of induction schemes in higher-order logic. Lecture Notes 
in Computer Science 1275 (1997), 275-290. 

17. TENNENT, R. D. Semantics of Programming Languages. Prentice Hall, New York, 1991. 



DSL Implementation Using Staging and Monads 

Tim Sheard, Zine-el-abidine Benaissa, and Emir Pasalic 
Pacific Software Research Center 

Oregon Graduate Institute 
P.O. Box 91000 Portland, Oregon 97291-1000 USA 

March 21, 1999 

Abstract 
The impact of Domain Specific Languages (DSLs) on software design is considerable. They 

allow programs to be more concise than equivalent programs written in a high-level programming 
languages. They relieve programmers from making decisions about data-structure and algorithm 
design, and thus allows solutions to be constructed quickly. Because DSL's are at a higher level 
of abstraction they are easier to maintain and reason about than equivalent programs written 
in a high-level language, and perhaps most importantly they can be written by domain experts 
rather than programmers. 

The problem is that DSL implementation is costly and prone to errors, and that high level 
approaches to DSL implementation often produce inefficient systems. By using two new pro- 
gramming language mechanisms, program staging and monadic abstraction, we can lower the 
cost of DSL implementations by allowing reuse at many levels. These mechanisms provide the 
expressive power that allows the construction of many compiler components as reusable libraries, 
provide a direct link between the semantics and the low-level implementation, and provide the 
structure necessary to reason about the implementation. 

1    Introduction 

We outline an improved method for the design and implementation of Domain-Specific Languages 
(DSLs). The method builds upon our experience with staged programming using the staged pro- 
gramming language METAML [27, 26]. The method also incorporates ideas from other researchers 
in the areas of modular language design [28, 24, 12], correct compiler generation [15, 19, 18, 16, 10], 
and partial evaluation [8, 13]. While relying on recent advances in functional programming (such as 
higher-order type constructors, and local polymorphism), it is applicable to all kinds of languages, 
not just applicative ones. The method unifies many of these ideas into a coherent process. 

A problem with the DSL approach to software construction is its cost. Realizing a DSL requires 
an implementation. Such implementations are large and expensive to produce. So, unless many 
solutions are required, it may not pay to build a compiler or other implementation mechanism. 
DSL implementation is also conceptually hard. Most software engineers are not comfortable taking 
on the task of language design and implementatöion. Even if they are, language implementation 
is a difficult, complex process that does not easily scale. An implementation for a simple language 
often does not scale as the language evolves to meet newer demands. Lowering the cost of DSL 
implementations, and making good ones more manageable, will make the DSL approach applicable 
to a broader domain of problems. 

Our approach to solving these problems is to apply new methods of abstraction such as mon- 
ads [28, 31] and staging [27, 26] to the implementation of DSLs. This makes the effort required to 

1 



build a compiler for a DSL reusable and spreads the cost over several DSLs. To make language 
implementation manageable for the masses, there must exist good rules of thumb for language 
implementation. One way to accomplish this is by elaborating a step by step method that splits 
the labor into well-defined steps, each with a relatively small amount of work. In our method, each 
step deals with an orthogonal design decision. By using good abstraction principles, our method 
partitions each design decision into a separate code module. In addition, our method makes explicit 
the propositions that must be proved to show the correctness of the compiler with respect to its 
semantics. 

Our method comprises the following steps. First, construct the denotational semantics as 
an interpreter in a functional language. Second, capture the effects of the language, and the 
environment in which the target language must run, in a monad. Then rewrite the interpreter in 
a monadic style. Third, stage the interpreter using meta-programming techniques. This staging is 
similar to the staging of interpreters using a partial evaluator, but is explicit rather than implicit, 
since the programmer places the annotations directly, rather than using an automatic binding time 
analysis to discover where they should be placed. This leaves programmers in complete control, 
and they can limit what appears in the residual program. Fourth, the resulting program is both a 
data-structure and a program, so it can be both directly executed and analyzed. This analysis can 
include both source to source transformations, or translation into another form (i.e. intermediate 
code or assembly language). Because the programmer has complete control over the earlier steps, 
the structure of the residual program is highly constrained, and this final translation can be a trivial 
task. 

Staging of interpreters using partial evaluation has been done before [1, 5]. The contribution of 
this paper is to show that this can all be done in a single program. A system incorporating staging 
as a first class feature of a language is a powerful tool. While using such a tool to write a compiler 
the source language can be given semantics, it can be staged, translated, and optimized all in a 
single paradigm. It requires neither additional processes nor tools, and is under the complete control 
of the programmer; all the while maintaining a direct link between the semantics of interpreter and 
those of the compiler. 

2    Staging in MetaML 

METAML is almost a conservative extension of Standard ML. Its extensions include four staging 
annotations. To delay an expression until the next stage one places it between meta-brackets. 
Thus the expression <23> (pronounced "bracket 23") has type <int> (pronounced "code of int"). 
The annotation, ~e splices the deferred expression obtained by evaluating e into the body of a 
surrounding Bracketed expression; and run e evaluates e to obtain a deferred expression, and then 
evaluates this deferred expression. It is important to note that "e is only legal within lexically 
enclosing Brackets. We illustrate the important features of the staging annotations in the short 
METAML sessions below. 

-I   val z = 3+4; 
val z = 7  :  int 

Users access METAML through a read-type-eval-print top-level. The declaration for z is read, 
type-checked to see that it has a consistent type (int here), evaluated (to 7), and then both its 
value and type are printed. 

-I  val quad =  ( 3+4,     <3+4>, lift  (3+4),  <z>    ); 



val quad = (7, <3 '/.+ 4>,  <7>, <7.z> )   : 
( int * <int> *      <int> * <int>) 

The declaration for quad contrasts normal evaluation with the three ways objects of type code 
can be constructed. Placing brackets around an expression (<3+4>) defers the computation of 3+4 
to the next stage, returning a piece of code. Lifting an expression (lift (3+4)) evaluates that 
expression (to 7 here) and then lifts the value to a piece of code that when evaluated returns the 
same value. Brackets around a free variable (<z>) creates a new constant piece of code with the 
value of the variable. Such constants print with a '/, sign to indicate they are constants. We call 
this lexical-capture of free variables. Because in METAML operators (such as + and *) are also 
identifiers, free occurrences of operators in constructed code often appear with '/, in front of them. 

-|  fun inc x = <1 + ~x>; 
val inc = Fn    :   ['a].<int> -> <int> 

The declaration of the function inc illustrates that larger pieces of code can be constructed from 
smaller ones by using the escape annotation. Bracketed expressions can be viewed as frozen, i.e. 
evaluation does not apply under brackets. However, is it often convenient to allow some reduction 
steps inside a large frozen expression while it is being constructed, by "splicing" in a previously 
constructed piece of code. METAML allows one to escape from a frozen expression by prefixing a 
sub-expression within it with the tilde (~) character. Escape must only appear inside brackets. 

-|  val six = inc <5>; 
val six =    <1 '/.+ 5>  :  <int> 

In the declaration for six, the function increment is applied to the piece of code <5> constructing 
the new piece of code <1 '/,+ 5>. 

-|   run six; 
val it = 6   :   int 

Running a piece of code, strips away the enclosing brackets, and evaluates the expression inside. 
To give a brief feel for how MetaML is used to construct larger pieces of code at run-time consider: 

-|   fun mult x n = if n=0 then <1> else < ~x * "(mult x  (n-1))  >; 
val mult = fn    :  <int> -> int    -> <int> 

-I   val cube = <fn y => "(mult <y> 3)>; 
val cube = <fn a => a *   (a *   (a *  1))>   :   <int    -> int> 

-1  fun exponent n = <fn y =>    (mult <y> n)>; 
val exponent = fn     :   int    -> <int    -> int> 

The function mult, given an integer piece of code x and an integer n, produces a piece of code 
that is an n-way product of x. This can be used to construct the code of a function that performs the 
cube operation, or generalized to a generator for producing an exponentiation function from a given 
exponent n. Note how the looping overhead has been removed from the generated code. This is the 
purpose of program staging and it can be highly effective as discussed elsewhere [4, 6, 11, 23, 27]. 



3 Monads in METAML 

We assume the reader has a working knowledge of monads[29, 31]. We use the unit and bind formu- 
lation of monads[30]. In METAML a monad is a data structure encapsulating a type constructor 
M and the unit and bind functions. 

datatype  ('M   :   * -> *  )  Monad = Mon of 
(['a].   'a ->  'a 'M)  * (* unit function *) 
(['a,'b].   'a  'M ->   ('a ->   'b   'M)  ->   'b M);     (* bind function *) 

This definition uses SML's postfix notation for type application, and two non-standard exten- 
sions to ML. First, it declares that the argument ('M : * -> * ) of the type constructor Monad 
is itself a unary type constructor [7]. We say that 'M has kind: * -> *. Second, it declares that 
the arguments to the constructor Mon must be polymorphic functions [17]. The type variables in 
brackets, e.g. ['a, 'b], are universally quantified. Because of the explicit type annotations in the 
datatype definitions the effect of these extensions on the Hindley-Milner type inference system is 
well known and poses no problems for the METAML type inference engine. 

In METAML, Monad is a first-class, although pre-defined or built-in type. In particular, there 
are two syntactic forms which are aware of the Monad datatype: Do and Return. Do and Return 
are METAML'S syntactic interface to the unit and bind of a monad. We have modeled them after 
the do-notation of Haskell[9, 20]. An important difference is that METAML'S Do and Return are 
both parameterized by an expression of type 'M Monad. Do and Return are syntactic sugar for the 
following: 

(* Syntactic Sugar Derived Form *) 

Do   (Mon(unit,bind))  { x <- e;  f }      =      bind e  (fn x => f) 

Return  (Mon(unit,bind)) e =      unit e 

In addition the syntactic sugar of the Do allows a sequence of Xj <- e; forms, and defines this 
as a nested sequence of Do's. For example: 

Do m { xl  <- el;  x2 <- e2  ;  x3 <- e3   ;  e4 } 
Do m { xl  <- el;   Do m { x2 <- e2   ;  Do m { x3 <- e3   ;   e4 }}} 

Users may freely construct their own monads, though they should be very careful that their 
instantiation meets the monad axioms. The monad axioms, expressed in METAML'S DO and Return 
notation are: 

Do { x <- Return e  ;  z } = z[e/x] 
Do { x <- m  ;   Return x } = m 
Do { x <- Do { y <- a ;  b }  ;  c } = Do { y'  <- a ;  Do { x <- b[y'/y]   ;  c } } 

= Do { y'  <- a ;  x <- b[y'/y]   ;  c } 

4 Illustrating our compiler development method 

In this section, we illustrate our method by building the front end of a compiler for a small im- 
perative while-language. We proceed in three steps. First, we introduce the language and its 
denotational semantics by giving a monadic interpreter as a one stage METAML program. Second, 
we stage this interpreter by using a two stage METAML program in order to produce a compiler. 
Third, we illustrate the usefulness of the staging approach, by showing how using MetaML's inten- 
sional analysis tools can be used to optimize or further translate the output of a staged program. 



(* 5 *) 
(* X *) 
(* x - 5 *) 
(* X > 1 *) 
(* X * 4 *) 

4.1 The while-language 

In this section, we introduce a simple while-language composed from the syntactic elements: ex- 
pressions (Exp) and commands (Com). In this simple language expressions are composed of integer 
constants, variables, and operators. A simple algebraic datatype to describe the abstract syntax of 
expressions is given in METAML below: 

datatype Exp = 
Constant of int 

I  Variable of string 
I  Minus of  (Exp * Exp) 
I  Greater of  (Exp * Exp) 
I  Times of  (Exp * Exp)   ; 

Commands include assignment, sequencing of commands, a conditional (if command), while 
loops, a print command, and a declaration which introduces new statically scoped variables. A 
declaration introduces a variable, provides an expression that defines its initial value, and limits its 
scope to the enclosing command. A simple algebraic datatype to describe the abstract syntax of 
commands is: 

datatype Com = 
Assign of   (string * Exp) 

I   Seq of   (Com * Com) 
I   Cond of   (Exp * Com * Com) 
I  While of   (Exp * Com) 
I  Declare of   (string * Exp * Com) 
I  Print of Exp; 

A simple while-program in concrete syntax, such as 

declare x = 150 in 
declare y = 200 in { while x > 0 do { x  :=x- 1; y := y - 1}; print y} 

is encoded abstractly in these datatypes as follows: 

val SI = 
Declare("x",Constant 150, 
Declare("y",Constant 200, 

Seq(While(Greater(Variable "x",Constant 0), 
Seq(Assign("x",Minus(Variable "x",Constant 1)), 

Assign("y",Minus(Variable "y",Constant 1)))), 
Print(Variable "y")))); 

4.2 The structure of the solution 

Staging is an important technique for developing efficient programs, but it requires some fore- 
thought. To get the best results one should design algorithms with their staged solutions in mind. 

The meaning of a while-program depends only on the meaning of its component expressions and 
commands. In the case of expressions, this meaning is a function from environments to integers. 
The environment is a mapping between names (which are introduced by Declare) and their values. 

There are several ways that this mapping might be implemented. Since we intend to stage the 
interpreter, we break this mapping into two components. The first component, a list of names, will 
be completely known at compile-time. The second component, a list of integer values that behaves 
like a stack, will only be known at the run-time of the compiled program. 

(* x := 1                   *) 
(* { x := 1; y := 2 }        *) 

(* if x then x := 1 else y := 1 *) 

(* while x>0 do x := x - 1     *) 

(* declare x=linx:=x-l *) 

(* print x                 *) 



The functions that access this environment distribute their computation into two stages. First, 
determining at what location a name appears in the name list, and second, by accessing the correct 
integer from the stack at this location. In a more complicated compiler the mapping from names 
to locations would depend on more than just the declaration nesting depth, but the principle 
remains the same. Since every variable's location can be completely computed at compile-time, it 
is important that we do so, and that these locations appear as constants in the next stage. 

Splitting the environment into two components is a standard technique (often called a binding 
time improvement) used by the partial evaluation community[8]. We capture this precisely by the 
following purely functional implementation. 

type location = int; 
type index = string list; 
type stack = int list; 

(* position : string -> index -> location *) 
fun position name index = 

let fun pos n (nm::nms) = if name = nm then n else pos (n+1) nms 
in pos 1 index end; 

(* fetch  :   location -> stack ->  int *) 
fun fetch n  (v::vs)  = if n = 1 then v else fetch  (n-1)  vs; 

(* put:   location -> int -> stack -> stack *) 
fun put n x  (v::vs)  = if n = 1 then x::vs else v::(put  (n-1)  x vs); 

The meaning of Com is a stack transformer and an output accumulator. It transforms one stack 
(with values of variables in scope) into another stack (with presumably different values for the same 
variables) while accumulating the output printed by the program. 

To produce a monadic interpreter we could define a monad which encapsulates the index, 
the stack, and the output accumulation. Because we intend to stage the interpreter we do not 
encapsulate the index in the monad. We want the monad to encapsulate only the dynamic part of 
the environment (the stack of values where each value is accessed by its position in the stack, and 
the output accumulation). 

The monad we use is a combination of monad of state and the monad of output. 

datatype  'a M = StOut of   (stack ->   ('a * stack * string)); 
fun unStOut  (StOut f)  = f; 
fun unit x = StOut(fn n =>  (x,n,"")); 
fun bind e f = StOut(fn n => let val  (a,nl,sl)  =  (unStOut e)  n 

val   (b,n2,s2)  =    unStOut(f a)  nl 
in  (b,n2,sl  "  s2)  end); 

val mswo   :   M Monad = Mon(unit,bind);   (* Monad of state with output *) 

The non-standard morphisms must describe how the stack is extended (or shrunk) when new 
variables come into (or out of) scope; how the value of a particular variable is read or updated; and 
how the printed text is accumulated. Each can be thought of as an action on the stack of mutable 
variables, or an action on the print stream. 

(* read  :   location -> int M *) 
fun read i = StOut(fn ns =>  (fetch i ns.ns,"")); 

(* write  :  location -> int -> unit    M *) 



fun write i v = StOut(fn ns =>( (), put i v ns, "" )); 

(* push: int -> unit M *) 
fun push x = StOut(fn ns =>((), x :: ns, "")); 

(* pop  : unit M *) 
val pop = StOut(fn (n::ns) =>  ((), ns,  "")); 

(* output:  int -> unit M *) 
fun output n = StOut(fn ns => ( (), ns,   (toString n)~" ")); 

4.3    Step 1: monadic interpreter 

Because expressions do not alter the stack, or produce any output, we could give an evaluation 
function for expressions which is not monadic, or which uses a simpler monad than the monad 
defined above. We choose to use the monad of state with output throughout our implementation 
for two reasons. One, for simplicity of presentation, and two because if the while language semantics 
should evolve, using the same monad everywhere makes it easy to reuse the monadic evaluation 
function with few changes. 

The only non-standard morphism evident in the evall function is read, which describes how 
the value of a variable is obtained. The monadic interpreter for expressions takes an index mapping 
names to locations and returns a computation producing an integer. 

(*    evall:  Exp ->  index ->  int M *) 
fun evall exp index = 
case exp of 

Constant n => Return mswo n 
I   Variable x => let val loc = position x index 

in read loc end 
I  Minus(x,y)  => 

Do mswo { a <- evall x index ; 
b <- evall y index; 
Return mswo (a - b) } 

I  Greater(x,y)  => 
Do mswo { a <- evall x index  ; 

b <- evall y index; 
Return mswo  (if a  '>'  b then 1 else 0)  } 

I   Times(x,y)  => 
Do mswo { a <- evall x index  ; 

b <- evall y index; 
Return mswo  (a * b)  }; 

The interpreter for Com uses the non-standard morphisms write, push, and pop to transform 
the stack and the morphism output to add to the output stream. 

(* interpretl  :  Com -> index -> unit M *) 
fun interpretl stmt index = 
case stmt of 

Assign(name,e) => 
let val loc = position name index 
in Do mswo { v <- evall e index ; write loc v } end 

I Seq(sl,s2) => 
Do mswo { x <- interpretl si index; 



y <-  interpret1 s2 index; 
Return mswo  ()  } 

I   Cond(e,sl,s2) => 
Do mswo { x <- evall e index; 

if x=l 
then interpret1 si index 
else interpret1 s2 index } 

I  While(e,body)  => 
let fun loop  ()  = 

Do mswo { v <- evall e index  ; 
if v=0 then Return mswo  () 

else Do mswo { interpret1 body index  ; 
loop ()  } } 

in loop  ()  end 
I  Declare(nm,e,stmt) => 

Do mswo { v <- evall e index ; 
push v  ; 
interpretl stmt  (nm::index); 
pop } 

I  Print e => 
Do mswo { v <- evall e index; 

output v }; 

Although interpretl is fairly standard, we feel that two things are worth pointing out. First, 
the clause for the Declare constructor, which calls push and pop, implicitly changes the size of the 
stack and explicitly changes the size of the index (nm: index), keeping the two in synch. It evaluates 
the initial value for a new variable, extends the index with the variables name, and the stack with 
its value, and then executes the body of the Declare. Afterwards it removes the binding from the 
stack (using pop), all the while implicitly threading the accumulated output. The mapping is in 
scope only for the body of the declaration. 

Second, the clause for the While constructor introduces a local tail recursive function loop. 
This function emulates the body of the while. It is tempting to control the recursion introduced 
by the While by using the recursion of the interpretl function itself by using a clause something 
like: 

I  While(e,body) => 
Do mswo { v <- evall e index  ; 

if v=0 then Return mswo  () 
else Do mswo { interpretl body index  ; 

interpretl  (While(e,body))  index } 
} 

Here, if the test of the loop is true, we run the body once (to transform the stack and accumulate 
output) and then repeat the whole loop again. This strategy, while correct, will have disastrous 
results when we stage the interpreter, as it will cause the first stage to loop infinitely. 

There are two recursions going on here. First the unfolding of the finite data structure which 
encodes the program being compiled, and second, the recursion in the program being compiled. In 
an unstaged interpreter a single loop suffices. In a staged interpreter, both loops are necessary. In 
the first stage we only unfold the program being compiled and this must always terminate. Thus 
we must plan ahead as we follow our three step process. Nevertheless, despite the concessions 
we have made to staging, this interpreter is still clear, concise and describes the semantics of the 
while-language in a straight-forward manner. 

8 



4.4    Step 2: staged interpreter 

To specialize the monadic interpreter to a given program we add two levels of staging annotations. 
The result of the first stage is the intermediate code, that if executed returns the value of the 
program. The use of the bracket annotation enables us to describe precisely the code that must be 
generated to run in the next stage. Escape annotations allow us to escape the recursive calls of the 
interpreter that are made when compiling a while-program. 

(* eval2: Exp -> index -> <int M> *) 
fun eval2 exp index = 
case exp of 

Constant n => <Return mswo "(lift n)> 
I  Variable x => 

let val loc = position x index 
in <read "(lift loc)> end 

I  Minus(x,y) => 
<Do mswo { a <- ~(eval2 x index)   ; 

b <- ~(eval2 y index); 
Return mswo  (a - b)  }> 

I   Greater(x,y)  => 
<Do mswo { a <-  ~(eval2 x index)   ; 

b <- "(eval2 y index); 
Return mswo  (if a  '>'  b then 1 else 0)  }> 

I   Times(x,y)  => 
<Do mswo { a <- ~(eval2 x index)   ; 

b <-     (eval2 y index); 
Return mswo  (a * b)  }>; 

The lift operator inserts the value of loc as the argument to the read action. The value of loc 
is known in the first-stage (compile-time), so it is transformed into a constant in the second-stage 
(run-time) by lift. 

To understand why the escape operators are necessary, let us consider a simple example: eval2 
(Minus(Constant 3,Constant 1))   []. We will unfold this example by hand below: 

eval2  (Minus(Constant 3,Constant 1))   []   = 

< Do mswo 

{ a <- ~(eval2 (Constant 3) []); 

b <- ~(eval2 (Constant 1) []); 
Return mswo (a-b)} > = 

< Do mswo 

{ a <- ~<Return mswo 3>; 

b <- "<Return mswo 1>; 
Return mswo (a - b)} > = 

< Do mswo 

{ a <- Return mswo 3; 
b <- Return mswo 1; 
Return mswo (a - b)} > = 

< Do '/jnswo 

{ a <- Return '/.mswo 3; 



b <- Return '/.mswo 1; 

Return '/.mswo (a '/.- b)} > 

Each recursive call produces a bracketed piece of code which is spliced into the larger piece being 
constructed. Recall that escapes may only appear at level-1 and higher. Splicing is axiomatized 
by the reduction rule: ~<x> —> x, which applies only at level-1. The final step, where mswo and - 
become '/.mswo and '/,-, occurs because both are free variables and are lexically captured. 

Interpreter for Commands. 

Staging the interpreter for commands proceeds in a similar manner: 

(*    interpret2 : Com -> index ->    <unit M> *) 
fun interpret2 stmt index = 
case stmt of 

Assign(name,e) => 
let val loc = position name index 
in <Do mswo { n <- ~(eval2 e index)   ; 

write "(lift loc)  n }> 
end 

I   Seq(sl,s2)  => 
<Do mswo { x <- ~(interpret2 si index); 

y <- ~(interpret2 s2 index); 
Return mswo  ()  }> 

I   Cond(e,sl,s2) => 
<Do mswo { x <-    (eval2 e index); 

if x=l 
then "(interpret2 si index) 
else "(interpret2 s2 index)}> 

I   While(e,body) => 
<let fun loop  ()  = 

Do mswo { v <-  "(eval2 e index); 
if v=0 

then Return mswo  () 
else Do mswo { q <- "(interpret2 body index);  loop  ()} 

} 
in loop  ()  end> 

I  Declare(nm,e,stmt) => 
<Do mswo { x <- ~(eval2 e index)   ; 

push x  ; 
~(interpret2 stmt  (nm::index))   ; 
pop }> 

I  Print e => 
<Do mswo { x <- ~(eval2 e index)   ; 

output x }>; 

4.4.1    An example. 

The function interpret2 generates a piece of code from a Com object. To illustrate this we apply 
it to the simple program: declare x = 10 in { x  :=x-l; print x }   and obtain: 

<Do '/Cmswo 
■[ a <- Return '/.mswo 10 

10 



; '/.push a 
; Do '/.mswo 

{ e <- Do '/.mswo 
{ d <- Do '/.mswo 

{ b <- '/.read 1 

; c <- Return '/.mswo 1 

; Return '/.rnswo b '/,- c 

} 
; '/.write 1 d 

> 
; g <- Do '/.mswo 

{ f <- '/.read 1 

; '/.output f 

> 
; Return '/.mswo () 

} 

; '/.pop 

}> 

Note that the staged program is essentially a compiler, translating the syntactic representation 
of the while-program into the above monadic object-program that will compute its meaning. Note 
that in the object-program all of the compile-time operations have disappeared. This object- 
program is fully executable. Simply by using the run operator of METAML, it can be executed for 
prototyping purposes. 

5    Step 3: Back-end translation and intermediate code optimiza- 
tion 

METAML is a meta-programming system. It has an object language and a meta-language. Meta- 
programs are programs that manipulate object programs. In METAML both the object language 
and the meta-language are ML. In METAML an object-program is both a data structure that can 
be manipulated, and a program that can be run. 

This duality plays an important role in target code generation. The result of applying the 
staged interpreter from the previous step (a meta-program) to a DSL program to be compiled is a 
highly constrained residual program (an object program). This program is both a data-structure 
and a program, so it can be both directly executed (rapid prototype) and analyzed. 

We use the object-code analysis capabilities of MetaML to transform the object program into 
the final target language. This analysis can include both source to source transformations, or 
translation into another form (i.e. intermediate code, assembly language, or target language). 

Control over the form of the residual program is crucial here. The residual program is always 
an ML program (ML is the object language). But the user can control the form of this ML 
program. A goal of the translation is to make the object program use only those ML features 
directly supported by the target language. For example, we may structure the staged interpreter 
such that the residual program is first order, or just a sequence of primitive actions encoded as 
non-standard morphisms in the monad. This is where we connect the abstract monadic actions to 
their efficient implementations. 

The object program produced above is an ML code fragment. It can be executed or analyzed. 
The code produced by interpret2 is a restricted subset of ML. Disregarding the higher-order 
functions implicit in the monad, it is first order, and contains only Do expressions, Return expres- 

11 



sions, if expressions, calls to the non-standard morphisms read, write, push , pop, and output, 
primitive arithmetic operators - and '>', and local looping functions (like loop above). The code 
is so regular that it can be captured by a simple grammar. The next step is to analyze this code 
to make the final translation to the target language, or to apply some ML-source to ML-source 
level optimizations. The reader might notice that the object-program above could be considerably, 
further simplified by applying the monad laws. There are many opportunities for doing so. After 
these laws are applied we obtain the much more satisfying: 

<Do y,mswo 
{ '/.push 10 

a <- '/.read 1 
b <- Return '/.mswo a '/,- 1 
c <- '/.write 1 b 
d <- '/.read 1 
e <- '/.output d 
Return '/.mswo () 
'/.pop 

}> 

In addition to the monad laws which hold for all monads, we can also use laws which hold for 
particular non-standard morphisms. For instance, in the example above, we could avoid the second 
read of location 1 using the following rule: 

Do { el;   c <- '/.write 1 b  ;  d <- '/.read 1;   e2> = Do { e;   c <- '/.write 1 b;  e2[b/d]> 

Every target language will have many such laws, and because our target language is both 
executable-code, and data-structure we can perform these optimizations. The final step is to 
translate the ML code fragment into the target language. This step uses the same intensional 
analysis of code capabilities of the optimization steps, and is the subject of the next section. 

5.1    Intensional analysis of code fragments 

In this section, we outline how we do intensional analysis of residual code. We provide a high-level 
pattern matching based interface. Code patterns can be constructed by placing brackets around 
code. For example a pattern that matches the literal 5 can be constructed by: 

-|   fun is5 <5> = true 
I   is5 _ = false; 

val is5 = fn     :   <int> -> bool 

-I   is5  (lift   (1+4)); 
val it = true    :  bool 

-I is5 <0>; 
val it = false : bool 

The function is5 matches its argument to the constant pattern <5> if it succeeds it returns 
true else false. Pattern variables in code patterns are indicated by escaping variables in the code 
pattern. 

-I fun parts < ~x + ~y > = S0ME(x,y) 
I parts _ = NONE; 

12 



val parts = fn : <int> -> (<int> * <int>) option 

-I parts <6 + 7>; 
val it = SOME (<6>,<7>) : (<int> * <int>) option 

-|  parts <2>; 
val it = NONE    :   (<int> * <int>) option 

The function parts matches its argument against the pattern < ~x + ~y >. If its argument is a 
piece of code which is the sum of two sub terms, it binds the pattern variable x to the left subterm 
and the pattern variable y to the right subterm. 

We use of higher-order pattern variables[22, 21] for code patterns that contain binding occur- 
rences, such as lambda expressions, let expressions, do expressions, or functions. 

For example, a high-order pattern that matches the code of a function <f n x => .. . >, of type 
<'a -> 'b> is written in eta-expanded form <fn x => "(g <x>)>. When the pattern matches, 
the matching binds the higher-order pattern variable g to a function with type <'a> -> <'b> 

Every higher order pattern variable must be in fully saturated form, by applying it to all the 
bound variables of the code pattern. For example if g is a higher-order pattern variable with type 
<'a> -> <'b> -> <'c> then we must write ("g <x> <y>). The arguments to the higher-order 
pattern variable must be explicit bracketed variables, one for each variable bound in the code 
pattern at the context where the higher-order pattern appears. A higher-order pattern variable is 
used like a function on the right-hand side of a matching construct. 

For example functions which implement the three monad axioms are written as follows: 

fun monadl <do mswo { x <- return mswo ~e;  ~(z <x>)  }> = z e 

fun monad2 <do mswo { x <- "m;  return x }> = m 

fun monad3 <do mswo { x <- do mswo {y <- "a;  ~(b <y>)>;  "(c <x> }> = 
<do mswo { y'  <- "a;  do mswo { z <- "(b <y'>);  "(c <z>) }}> 

When the the function monadl is applied to the code <do mswo {a <- returm mswo (g 3); 
h(a + 2)}>, the pattern variable e is bound to the function fn x => <h("x + 2)> which has the 
type <int> -> <int M>. The right-hand side of monadl rebuilds a new code fragment, substituting 
formal parameter x of e by <g 3>, constructing the code <h((g 3)+ 2)>. 

This technique can be used to build optimizations, or to translate a residual program into a 
target language. 

6    Conclusion 

The important issues of efficient language implementation by refinement from high-level speci- 
fications are: the efficient use of the underlying target environment, and removing the layer of 
interpretative computation introduced by such specifications. We have shown that monads and 
staging are the right abstraction mechanisms to accomplish the task. To effectively use these tools 
we propose that DSL implementers follow a well defined method. We reiterate our method here: 

• Domain analysis. The problem domain is analyzed to find the common abstractions around 
which the language is designed. This step is perhaps the most important step in a good 
language design. It has been studied extensively by others [32, 2, 3]. Our research group 
has been investigating the integration of DSL design and domain analysis for several years. 

13 



Recently Widen and Hook have summarized a "top level" view of this integration, which is 
called the Software Design Automation (SDA) method [33]. This method provides a design 
process and many synthesis techniques to facilitate the integration of traditional domain 
analysis activities with language design and implementation. The method we propose can be 
used in the context of SDA. It specifically addresses the language implementation phase of 
the process. 

Definitional interpreter. Once the language has been identified, the next step is to provide 
it with a semantics given as a pure functional interpreter. This program can be thought of as 
its high-level definition [14, 25]. high-level interpreters are usually easy to construct and pro- 
vide a reference which can be consulted to resolve any ambiguity in the language specification 
discovered in further steps. By building it in an executable framework (a functional language, 
such as Haskell or ML) it also provides a rapid prototype against which expectations can be 
measured. 

Binding time improvements. The next step requires a binding separation [8]. By iden- 
tifying compile-time versus run-time data structures in the definitional interpreter, we can 
separate those with both components into separate data-structures. Examples of binding 
time improvements include the separation of environments, which map names to values, into 
a compile-time index and a run-time stack, and the introduction of a local recursive func- 
tion to separate the recursion which drives the analysis of the syntax of the program being 
interpreted from the recursion that encodes the looping of the while command. 

Target domain analysis. The next step is to analyze the target language to identify the 
primitive implementation features that will support the translation. This step is usually 
straight-forward as the target language is often fixed, and well understood. 

Design a monad. The next step is to design a monad to capture the effects and actions 
implicit in the target language. This is a hard step in the process since it requires both abstract 
knowledge about the structure and properties of monads, and detailed concrete knowledge 
about the target domain. The choices made in this step influence the structure of the monad, 
the structure of the monadic interpreter, and the run-time system which interacts with the 
low-level effects of the target language. 

Once the monad is designed, an implementation for the monad as a pure functional emulation 
must be produced. The implementation must emulate the actions in a purely functional 
setting by explicitly threading abstract representations of the actions such as "stores", "I/O 
streams", or "exception continuations" in and out of all computations. 

Monadic Interpreter. The next step is to refine the purely functional definitional inter- 
preter into one written in a monadic style [28, 24, 13]. This implementation is still purely 
functional because the actions of the monad are emulated in a functional style. But because 
the actions are now explicit, we have moved the form of definition closer to the target lan- 
guage. This step often requires a big change to the structure of the source code, because the 
monad makes implicit much of the "plumbing" explicit in the interpreter. The cost of this 
restructuring is not without benefit. The removal of the explicit plumbing results in programs 
which are simpler, and more immune to future changes. 

Staging. The next step completes the binding-time separation begun in the binding time 
improvement step. That step separated the compile-time data from the run-time data. Stag- 
ing separates the compile-time computations from the run-time computations. This is done 

14 



by placing explicit staging annotations in the program written in METAML. Staging is the 
crucial step that differentiates an (inefficient) interpreter from an (efficient) compiler. 

• Transformation of residual code. 

The residual object-program produced by a staged interpreter is both a data structure that can 
be manipulated, and a program that can be run. Control over the form of the residual program 
is crucial here. The residual program is always an ML program (ML is the object language). 
But the user can control the form of this ML program. A goal of the translation is to make 
the object program use only those ML features directly supported by the target language. 
The restricted form of the residual object program make it possible to use the intensional 
analysis of object-code tools provided by MetaML to easily build the final translation step to 
the target language. 

6.1 Benefits of the approach 

This paper illustrated a step by step method for constructing correct and efficient implementations 
of DSLs. The method has the following advantages over building a DSL implementation in an 
ad-hoc fashion. 

• Simplicity. We divide the task of DSL implementation of DSL into small manageable tasks. 
The compiler is constructed by a method of refinement, and we use special abstraction mech- 
anisms so that each step addresses only a single aspect of the compiler. 

• Reuse. Our method provides many opportunities for reuse. By using the abstraction meth- 
ods of monads and staging, much of the code remains unchanged between refinement steps. 
In addition, monad implementations are reusable across DSLs, and multiple DLS using the 
same target language can reuse the intensional analysis. 

• Control. Instead of using a fixed set of techniques or tool to generate compilers, we outline a 
method which provides users control over each step. A good impedance match between low- 
level features of the target language and the high-level DSL is necessary for good performance. 
Since every compiler is different, users need such fine grained control. 

• Correctness. The METAML type system provides major support for ensuring the correct- 
ness of the compilers generated. It is simply not possible to write a type-incorrect translation. 
But type-correctness is not enough. We wish to prove other correctness properties as well, 
such as the equivalence between the artifacts produced by each step of the method. We be- 
lieve that it is possible for each step to make explicit its proof obligations, and because each 
step produces a functional program, it is possible to use equational reasoning to prove these 
obligations 

6.2 The Implementation 

Everything you have seen in this paper, except the higher order pattern matching over code, has 
been implemented in the METAML implementation. The examples are actual runs of the system. 

The higher order pattern matching is currently under development. We found the normalizing 
effect of the monad laws so compelling that we implemented them in an ad-hoc fashion inside the 
METAML system. 

15 



References 

[1] Anders Bondorf and Jens Palsberg. Compiling actions by partial evaluation. In Conference 
on Functional Programming Languages and Computer Architecture, pages 308-320, New York, 
June 1993. ACM Press. Copenhagen. 

[2] Grady Campbell. Abstraction-based reuse repositories. Technical Report REUSE- 
REPOSITORIES-89041-N, Software Productivity Consortium Services Corporation, 2214 
Rock Hill Road, Herndon, Virginia 22070, June 1989. 

[3] Grady Campbell, Stuart Faulk, and David Weiss. Introduction to Synthesis. Technical Report 
INTRO-SYNTHESIS-PROCESS-90019-N, Software Productivity Consortium Services Corpo- 
ration, 2214 Rock Hill Road, Herndon, Virginia 22070, 1990. 

[4] Charles Consel and Frangois Noel. A general approach for run-time specialization and its 
application to C. In Conference Record of POPL '96: The 23rd ACM SIGPLAN-SIGACT 
Symposium on Principles of Programming Languages, pages 145-156, St. Petersburg Beach, 
Florida, 21-24 January 1996. 

[5] O Danvy, J Koslowski, and K Malmkjaer. Compiling monads. Technical Report CIS-92-3, 
Kansas State University, Manhattan, Kansas, December 91. 

[6] Robert Glück and Jesper J0rgensen. Efficient multi-level generating extensions for program 
specialization. In S. D. Swierstra and M. Hermenegildo, editors, Programming Languages: 
Implementations, Logics and Programs (PLILP'95), volume 982 of Lecture Notes in Computer 
Science, pages 259-278. Springer-Verlag, 1995. 

[7] Mark P. Jones. A system of constructor classes: overloading and implicit higher-order polymor- 
phism. In Proceedings of the Conference on Functional Programming Languages and Computer 
Architecture, Copenhagen, Denmark, June 1993. 

[8] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and Automatic 
Program Generation. Series editor C. A. R. Hoare. Prentice Hall International, International 
Series in Computer Science, June 1993. ISBN number 0-13-020249-5 (pbk). 

[9] Paul Hudak Simon Peyton Jones, Philip Wadler, Brian Boutel, John Fairbairn, Joseph 
Fasel, Maria M. Guzman, Kevin Hammond, John Hughes, Thomas Johnsson, Dick Kieburtz, 
Rishiyur Nikhil, Will Partain, and John Peterson. Report on the programming language 
Haskell. SIGPLAN Notices, 27(5):Section R, 1992. 

[10] Peter Lee. Realistic Compiler Generation. Foundations of Computing Series. MIT Press, 1989. 

[11] Mark Leone and Peter Lee. A declarative approach to run-time code generation. In Workshop 
on Compiler Support for System Software (WCSSS), February 1996. 

[12] Sheng Liang and Paul Hudak. Modular denotational semantics for compiler construction. In 
ESOP'96: 6th European Symposium on Programming, number 1058 in LNCS, pages 333-343, 
Linkoping, Sweden, January 1996. 

[13] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular interpreters. 
In ACM Symposium on Principles of Programming Languages, pages 333-343, San Francisco, 
California, January 1995. 

16 



[14] P. Mosses. Denotational semantics. In J. van Leeuwen, editor, Handbook of Theoretical Com- 
puter Science. Elsevier Science Publishers B. V. (North-Holland), 1990. 

[15] Peter D. Mosses. SIS-semantics implementation system, reference manual and users guide. 
Technical Report DAIMI report MD-30, University of Aarhus, Aarhus, Denmark, 1979. 

[16] Peter D. Mosses. Action semantics. Cambridge Tracts in Theoretical Computer Science, (26), 
1992. 

[17] Martin Odersky and Konstantin Läufer. Putting type annotations to work. In 23rd ACM 
Symposium on Principles of Programming Languages, St. Petersburg, Florida, January 1996. 

[18] L. Paulson. Methods and Tools for Compiler Construction, B. Lorho (editor). Cambridge 
University Press, 1984. 

[19] Lawrence Paulson. A sematics directed compiler generator. In Conference Record of the Ninth 
Annual ACM Symposium on Principles of Programming Languages, pages 224-233. ACM, 
January 1982. 

[20] John Peterson, Kevin Hammond, et al. Report on the programming language haskell, a non- 
strict purely-functional programming language, version 1.3. Technical report, Yale University, 
May 1996. 

[21] Frank Pfenning, Jolle Despeyroux, and Carsten Schrmann. Primitive recursion for higher-order 
abstract syntax. In Third International Conference on Typed Lambda Calculi and Applications 
(TLCA '97), pages 147-163, Nancy, France, April 1997. 

[22] Frank Pfenning, Gilles Dowek, Thrse Hardin, and Claude Kirchner. Unification via explicit 
substitutions: The case of higher-order patterns. In Joint International Conference and Sym- 
posium on Logic Programming (JICSLP'96), Bonn, Germany, September 1996. 

[23] Calton Pu and Jonathan Walpole. A study of dynamic optimization techniques: Lessons and 
directions in kernel design. Technical Report OGI-CSE-93-007, Oregon Graduate Institute of 
Science and Technology, 1993. 

[24] Guy Steele. Building interpreters by composing monads. In 21st Annual ACM Symposium on 
Principles of Programming Languages (POPL'94), Portland, Oregon, January 1994. 

[25] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Lan- 
guage Theory. The MIT Press, Cambridge, Massachusetts, 1977. 

[26] Walid Taha, Zine-El-Abidine Benaissa, and Tim Sheard. Multi-stage programming: Axiom- 
atization and type-safety. In 25th International Colloquium on Automata, Languages, and 
Programming, Aalborg, Denmark, 13-17July 1998. 

[27] Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations. In Proceed- 
ings of the ACM-SIGPLAN Symposium on Partial Evaluation and semantic based program 
manipulations PEPM'97, Amsterdam, pages 203-217. ACM, 1997. 

[28] Philip Wadler. Comprehending monads. Proceedings of the ACM Symposium on Lisp and 
Functional Programming, Nice, France, pages 61-78, June 1990. 

[29] Philip Wadler. Comprehending monads. Proceedings of the ACM Symposium on Lisp and 
Functional Programming, Nice, France, pages 61-78, June 1990. 

17 



[30] Philip Wadler. The essence of functional programming (invited talk). In 19 'th A CM Symposium 
on Principles of Programming Languages, Albuquerque, New Mexico, January 1992. 

[31] Philip Wadler. Monads for functional programming. In J. Jeuring and E. Meijer, editors, 
Advanced Functional Programming, volume 925 of LNCS. Springer Verlag, 1995. 

[32] Tanya Widen. Formal language design in the context of domain engineering. Master's thesis, 
Department of Computer Science and Engineering, Oregon Graduate Institute, October 1997. 

[33] Tanya Widen and James Hook. Software design automation: Language design in the context 
of domain engenieering. In The 10th International Conference on Soßware Engineering & 
Knowledge Engineering (SEKE'98), pages 308-317, San Francisco Bay, California, June 1998. 

18 



Erasure for Termination Proofs 

Hongwei Xi1 * and Joachim Steinbach2 

1 Department of Computer Science and Engineering 
Oregon Graduate Institute 

P.O. Box 91000, Portland, OR 97291, USA 
e-mail: hongwei@cse.ogi.edu 

2 Institut für Informatik 
Technische Universität München 

80290 München, Germany 
e-mail: steinbac@in.tum.de 

Abstract. We introduce a technique to facilitate termination proofs for term rewriting systems. We 
especially focus on innermost termination. The main features of this technique lie in its simplicity 
and effectiveness in practice. This work can be regarded as an application of the general notion 
termination through transformation to both termination and innermost termination proofs. 

1    Introduction 

It is a highly significant question to determine whether a term rewriting system (TRS) is terminating. 
In theorem proving, TRSs are widely used for a variety of purposes. For instance, it is often desirable to 
transform a set of equality rules into a TRS in order to reduce the search space. Also TRSs can be used 
for proving the termination of both functional and logic programs. 

Though termination is an undecidable property of TRSs in general, there have been many techniques 
developed for facilitating termination proofs. Some surveys are given in [Der87,Ste95b]. As mentioned in 
[MOZ96], techniques for termination proofs can be generally classified into two categories. 

- Basic techniques such as various path orderings [Pla78,KL80,Der82], Knuth-Bendix ordering [KB70], 
and polynomial interpretations [Lan79,BL87] that apply directly to a TRS. 

- Transformational approaches which in general transform a TRS into another TRS such that the ter- 
mination of the latter implies that of the former and the latter can be proven terminating more easily. 
For instance, transformation orderings [BL90,Ste95a], semantic labelling [Zan95] and freezing [Xi98] 
belong to this category. Also the dependency pair approach [AG97,AG98] can be loosely classified 
into this category since it transforms a TRS into a set of dependency pairs. 

There are also various results on modular termination, which basically give the sufficient conditions on 
two terminating TRSs that imply the termination of their union. The importance of modularity results 
is evident. It is often true that new TRSs are formed on top of existing TRSs. With modularity results, 
it is possible to reduce the termination of new TRSs to that of the existing ones. In this paper, we 
adopt a transformational approach for establishing some results on modular termination and innermost 
termination. Given a TRS 71, we intend to split TZ into the union of 1Z\ and TZi, and then prove that the 
(innermost) termination of TZ\ implies that of 7Z under some conditions. 

We say that a TRS is innermost terminating if there is no infinite innermost rewriting sequence in 
this TRS. Roughly speaking, innermost rewriting means that we can rewrite a term only if all of its 
proper subterms are in normal form. To some extent, innermost rewriting can model the notion of call- 
by-value evaluation in functional programming, though there are usually some special rules for handling 

Partially supported by the United States Air Force Materiel Command (F19 628-96-C-0161) and the Department 
of Defense. 



conditionals. Also it is proven in [AZ95] that the innermost termination of the TRS transformed from a 
logic program implies the termination of the logic program. Therefore, the study on innermost termination 
is of significant relevance to the study of termination of functional and logic programs. Moreover, there 
are also various results which relates innermost termination to termination [Gra95]. This allows us to 
reduce termination to innermost termination for some TRSs, where the latter is often easier to prove. 

We now present an example to illustrate the erasure technique before going into further details. It 
is frequent to encounter hierarchical combination of TRSs when we transform functional programs into 
TRSs. The simple reason is that defined functions are used to define new functions. For instance, the 
following function purge defined in ML [MTHM97] removes all duplicates from a given (integer) list while 
the function remove deletes all the elements equal to some given value. 

fun remove(x, nil)  = nil 
I  remove(x,  cons(y,  ys))  = 

if x = y then remove(x,  ys)  else cons(y,  remove(x,  ys)) 

fun purge(nil) = nil 
I  purge(cons(x, xs))  = cons(x,  purge(remove(x, xs))) 

When proving termination of such a functional program, the following aspect must be taken into consid- 
eration: 

Usually, the programmer applies a semantic argument such as a measure function in order to show 
that the defined function is terminating. For example, the function purge is terminating because 
the length of the list remove{x,ys) is not greater than that of ys. Note that it is in general an 
exceedingly difficult task to synthesize such a measure function from the structure of a program. 

The program can be transformed into the following TRS 72.pg *. 

(1) remove(x,nil) -> nil 
(2) remove(x, cons(y, ys)) -> if(x = y, remove(x, ys), cons(y, remove(x, ys))) 
(3) purge(nil) —> nil 
(4) purge(cons(x,xs)) —> cons(x, purge(remove(x,xs))) 

It seems difficult to prove the termination of this TRS with a syntactic approach. We can transform this 
TRS into the following TRS 7lpg with the erasure technique (ET) 2. 

(1') nil —» nil 
(2.1') cons(y,ys) ->ys 
(2.2') cons(y,ys) -» cons(y,ys) 

(3') purge(nil) —> nil 
(4') purge(cons(x,xs)) —> cons(x, purge (xs)) 

In this case, we project a term beginning with remove to the second argument of remove and a term 
beginning with if to either the second or the third argument of if. Under the recursive path ordering 
RPO with the precedence purge >- cons, the rules (2.1'), (3') and (4') can be strictly ordered and the rules 
(1') and (2.2') can be ordered. We now informally argue that 7£pg is terminating. Suppose that there is 
an infinite innermost 7£pg-rewriting sequence. We will show that this sequence induces an infinite 7?-Pg- 
rewriting sequence. We then observe that this induced sequence cannot have infinitely many applications 
of those strictly ordered rules. Therefore, there is an infinite 7£pg-rewriting sequence in which only applied 
rules are either (1') or (2.2'). We will then prove this implies that there is an infinite innermost 7lpg- 
rewriting sequence in which the only applied rules are either (1) or (2). This is a contradiction since the 

1 We omit the rules involving = and if at this moment. 
2 The following is slightly different from the actual application of ET for the purpose of presentation. 



TRS consisting of rules (1) and (2) is easily proven to be terminating. Therefore, we conclude that TZ is 
innermost terminating. This argument will be substantiated in Section 3. 

As already mentioned, most of the programmers use semantic arguments to prove termination. This 
is a powerful and flexible approach but it is also too semantic to be largely automated. On the other 
hand, the limited erasure technique is syntactic, and thus it is reasonable to expect that this approach 
can be combined with other approaches such as the freezing technique to facilitate automatic innermost 
termination proofs. However, we observe in practice [SX98] that it is even questionable to scale an 
approach as simple as RPOS, not mentioning other more involved techniques. Therefore, we expect that 
a more promising direction is to apply the erasure technique interactively. We shall make this point more 
clear with concrete examples. 

This paper is organized as follows. In Section 2, we briefly explain the notations and introduce some 
basic concepts. We present the erasure technique (ET) for innermost termination proofs in Section 3 and 
establish the correctness of ET. This section constitutes the main contribution of the paper. We then 
mention some closely related work and conclude. We also present some examples in Appendix A, which 
can be of some assistance for the reader to understand the presented work if necessary. 

2    Preliminaries 

In general, we stick to the notations in [DJ91] though some minor modifications may occur. We briefly 
summarize the notations and develop some concepts needed later. 

2.1    Basics 

We fix a countably infinite set X of variables x, y,... and use T for a (finite) set of function symbols 
f,g, Note that every function symbol / is of a fixed arity Ar(f) and / is a constant if Ar(f) = 0. 
We assume that there is at least one constant in T. Let T[T, X) denote the set of terms over T and X, 
and T(F) for the set of ground terms over T. Given a term t, Var(t) is the set of variables that occur 
in t. We use I —► r for a rewrite rule, where we require Var(r) C Var(l). We use a for substitutions and 
dom(cr) for its (finite) domain. Also ta stands for the result of applying a to t. 

Definition 1. Contexts C are defined as follows. 

1. rj is a context, and 
2. f(ti,..., ti-i, C, ti+i,..., tn) is a context if Ar(f) = n and C is a context. 

C[t] is the term obtained from replacing the hole [| in C with term t. 
A TRS TZ over T is a set of rewrite rules over T{T, X). A function symbol / is an 7£-defined function 

if / is the root symbol of I for some rewrite rule I —> r in TZ, and / is a 7^-constructor if it is not an 
7£-defined function. We often use c for constructors. 

Given a TRS TZ, we write t\ -^n t-x if t\ = C[lo-] and £2 = C[ra] and I —> r is a rewrite rule in TZ, and 
we may also write t\ —>n t2/(C,l —> r,a) to make this explicit. A term t is in 7?.-normal form if there 
exists no t' such that t —>TI t' holds. If / —> r 6 TZ and all proper subterms of la are in 7^-normal form, we 

say ti = C[la] rewrites to ti = C[ra] through innermost rewriting, and we use A^ for such a rewriting 
relation. Also we use t -+°ll t' to mean that either t = t' or t ->• t'. 

We use ->* for the transitive and reflexive closure of a relation -K TZ is (innermost) terminating if 
there exists no infinite (innermost) 7£-rewriting sequence. Given a substitution a, a is 7£-normal if a(x) 
is in 72.-normal form for every x € dom(er). The following definition is less standard. 

Definition 2. Given a term t, t is skeleton TZ-normal if we always obtain terms in TZ-normal form by 
replacing occurrences of variables in t with terms in TZ-normal form. Note that we do not have to replace 
occurrences of the same variable with the same terms. Similarly, t is skeleton TZ-terminating if we always 
obtain TZ-terminating terms by replacing occurrences of variables in t with TZ-terminating terms. 



We have the following limited method to construct skeleton 7£-normal terms. 

Proposition 1. Let 1Z be a TRS. 

1. Every variable is skeleton IZ-normal. 
2. c(t\,... ,tn) is skeleton TZ-normal if c is an TZ-constructor and ti are skeleton TZ-normal for i = 

l,...,n. 

Proof   This is straightforward by the definition. ■ 

In other words, ^-constructor terms, that is, terms constructed from ^-constructors and variables, are 
skeleton 7£-normal. Similarly, ^.-constructor terms are also ^-terminating. 

We use the notation y for a quasi ordering and >- for the strict part of y. A reduction ordering is 
an ordering y such that its strict part >- is well-founded and both y and >- are compatible with the 
term structure and stable under substitutions. One of the most well-known and widely used reduction 
orderings is the recursive path ordering RPOS with status [Der82,KL80]. Please see [Ste95b] for further 
details. 

Remark 1. We say that a rewrite rule / -> r is strictly ordered under y it I y r, and I -¥ r is ordered if 
lyr. 

2.2 Hierarchical Combination 

Definition 3. Given two TRSs TZ\ and 7Z-2, we say Tl\ and 1^2 form a hierarchical combination TZ\ L)7^2 
if no defined function symbols in TZ2 have appearances in TZ-i. Given a term t, a subterm of t is called an 
TZ2-subterm if the root symbol of the subterm is a 7l2-defined function symbol. 

Notice that hierarchical combination occurs naturally when we transform functional programs into TRSs: 
defined functions are used to define new functions. 

We omit the proof of the following lemma since it is really a bit of folklore in term rewriting. 

Lemma 1. Suppose that two TRSs TZ\ and 7^2 form a hierarchical combination TZ. We have the following. 

1. If all lZ2-subterms oft are in TZ-normal form and t ->TI t', then all TZ2-subterms oft' are in IZ-normal 
form. 

2. If TZ\  is terminating and all TZ2-subterms of t are in TZ-normal form, then t is (innermost) 7Z- 
terminating, that is, there is no infinite (innermost) TZ-rewriting sequence from t. 

In the following presentation, we may omit the prefix "7£-" if it is irrelevant or it is clear from the 
context which TZ we refer to. 

2.3 Erasure 

Generally speaking, t% is an erasure of 12 if h can be obtained from erasing some function symbols and 
subterms in t2- In other words, ti embeds into £2- However, it will soon be clear that some embedding 
may not be erasure. 

For every function symbol / in T with arity n, we associate with it the following rewrite rules for 
i = 1,... ,n. 

(f-O-i) f(xi, . . . , Xn) -> f(Xi, . . . , Xi-i, Xi+i,..., xn) 

(f-p-i) f{x\,...,xn) ->Xi 

An (f-o-i) rule is called an omitting rule and an (f-p-i) a projection rule. Both of these rules are called 
erasure rules. Notice that an (f-oi) rule changes the arity of /. Also we say that (f-p-i) is not argument- 
dropping if Ar(f) = 1. All other erasure rules are argument-dropping. 

Given a set S of erasure rules in which there is at most one rule associated with / for every / G T, 
we call S an erasure TRS. The J>-erasure of t is the <S-normal form of t, which is alternatively defined as 
follows. 



Definition 4.  Given an erasure TRS S, we use \t\s for the S-erasure oft and e(t)s for the set of terms 
erased from t. In general, we omit the subscript S if there is no risk of confusion. 

\t\={ 

t if t is a variable; 
/(|*i|,..., |ii_i|, \ti+11,..., |t„|) if t = f(tu ...,tn) and (f-o-i) e S; 
|**| if * = f(h,...,tn) and (f-p-i) 6 <S; 

w/(|*i|,...,l*n|) if * = /(*!>• ••,*».) and otherwise. 

e(t) = { 

0 if t is a variable; 

{ti} U U,-e{i,...,„}\{i> c(*i) */ t = /(*!'• • ■ > *") and (I'04) e S' 
{ti,...>ti_i,ti+i,...,tn}Uc(*i) if * = /(*i,...,*„) and (f-p-i) eS; 

. Uj6{i,..,n} c(*i) V l ~ /(*!'• ••'*") anrf otherwise. 

The erasure of rule / ->■ r is |/| ->■ |r|, and the erasure of K is defined analogously. Note that the erasure 
of a rewrite rule may not always be a legal rewrite rule. For instance, the «S-erasure of if (false, x, y) -> y 
is x -»• y for <S = {(i/-p-2)}, which is illegal. Similarly, the erasure of a TRS may not be a legal TRS. 

The erasure \C\ of a context C can be defined in a straightforward manner. However, \C\ may not be 
a context since the hole D in C may be erased away. In this case, we write \C\[t] simply for \C\. Given 
a substitution a, its erasure \a\ is a substitution with the same domain and 1^1 (a;) = \a(x)\ for every 
x € dom(cr). 

Proposition 2. Given a context C, a term t and a substitution a, we have \C[t]\ = |C|[|i|] and \ta\ = 
\t\\a\. 

Proof   This is straightforward from a structural induction on C and t, respectively. ■ 

Lemma 2. Suppose that the erasure |7£| of a TRS1Z is also a TRS. Ifh ->TI ti, then \t\\ -*\L\ |*21- 

Proof Assume t\ = C[la] and t^ = C[ra] for some a, where I ->• r € H. If \C\ is not a context, then 
|*i| = \C\ = |*2|- Otherwise, |*i| = |C|[|J||a|] and \t2\ = |C|[|r||a|] by Proposition 2. Since \l\ -> \r\ 6 \R\, 
we have |*i| -*\n\ l*2|- Clearly, if \C\ is a context, then |*i| -*\n\ l*2|- ■ 

Note that for every /£f with arity n, we can introduce the following omitting rule, where 1 < ti < 
... <ik <n. 

(f-o-(ii ,...,ik))  f(x\,..., xn) -> f(xi,..., xh _i, xil+i,..., Zjfc_i, xik+i,..., xn) 

In other words, this rule drops the subterms of /(*i,...,*n) at the positions i\,...,ik- This rule is 
argument-dropping. Note that this is a single rule, which should not be regarded as a combination of 
several omitting rules. Also it should be clear that all the previous results involving erasure still hold in 
the presence of such omitting rules. 

3    Erasure for Termination Proofs 

The erasure technique (ET) is mainly to facilitate modular innermost termination proofs for TRSs. 
Notice that innermost termination implies termination for overlay TRSs [Gra95], and therefore this can 
also facilitate (classical) termination proofs. We also show that ET can be directly applied to (classical) 
termination proofs. The essential idea behind ET is simulation as presented in [Xi98]. In general, ET can 
be regarded as an application of the notion termination through transformation to both termination and 
innermost termination proofs. 



3.1    Elementary Versions of ET 

In this section, we establish some elementary versions of the erasure technique. 

Definition 5. Given a TRS Ti, we say that Mr 6R has a conservative erasure if \l\ —> \r\ is a legal 
rewrite rule andt is skeleton TZ-normal for every t € e(r), that is, all subterms erased from r are skeleton 
It-normal. If all the rules in 7?. have conservative erasures, then we say TZ has a conservative erasure \TZ\. 

The next theorem is the most elementary one among those for ET which we will formulate and prove. 
Nonetheless, this theorem has largely captured the essential idea behind ET. 

Theorem 1. Assume that TZ = TZ\ U TZ2 has an erasure TZ' = TZ[ U TZ2, where TZ\ are the conservative 
erasures of TZi for i = 1,2. Also assume that under some reduction ordering, every rule in TZ[ can 
be ordered and every rule in TZ2 can be strictly ordered, then the innermost termination of TZ\ implies 
the innermost termination of TZ. In the case where all erasure rules are not argument-dropping, the 
termination of TZ\ implies that ofTZ. 

Proof   Suppose that there exists an infinite innermost ^-rewriting sequence as follows: 

*i ->K h ->TI • ■ • ->ii tn -+-R. ■ • ■ 

where U -» ti+i/(d, k -» ri,ai) for some context d, rule U -> r* € 7£ and substitution Oi. We show that 
there is an infinite innermost TZi -rewriting sequence. 

Obviously, we can require that all proper subterms of t\ be in 7£-normal form since we are handling 
innermost rewriting. This implies that all terms in e(£i) are in 7^-normal form. We now show inductively 
that this is true for all U {i = 1,2,...) by analyzing the difference between e{U) and e(ti+i). Let t £ e(£;+i) 
and we have the following. 

— £ is in e(ti). Then t is in 7^-normal form by induction hypothesis. 
— t is not in e(ti). Note U = Ci[liO-i] and U+\ — Ci[riOi]. If t contains rj<7,, then there must be some s 

in e(£j) such that s —> t. This is impossible since all terms in e(ti) are in 7^-normal form. Otherwise, 
t is dropped from riOi. This means that t either equals so~i for some s € e(r) or f is a subterm of 
o~i(x) for some x G dom(o-j). In the latter case, t is obviously in 7^-normal form since this is innermost 
rewriting. In the former case, t is in 7^-normal form since s is skeleton 7£-normal (note that TZ' is a 
conservative erasure of 7£) and a is an 7^-normal substitution. 

Therefore, for i = 1,2,..., all terms in t{U) are in 7^-normal form. By Lemma 2, we have the following. 

i*ii^iN->Ki-^i«„i-*Ki- 
We now show that every ->I^I step in this sequence is actually a -)\n\ step. It suffices to show that \d\ is 
always a context for i = 1,2, Suppose that |Cj| is not a context. Then Z;<7; is a subterm of some term 
in e{ti). This is impossible since all terms in e{U) are in 7?.-normal form. This implies that we actually 
have the following. 

|*iI ->|7J| 1*21 -*|ft| >n |*n| ->|K| ••" 

Since all rules in TZ[ are ordered and all rules in TZ'2 are strictly ordered, there must be an n such that 
all the rules applied after \tn\ are in TZ[. This implies that all the rules applied in the infinite innermost 
7?.-rewriting sequence after tn are in TZ-i, that is, we have an infinite innermost 7£i-rewriting sequence. 
Therefore, the innermost termination of TZi implies that of 7£. 

We now prove the second part of the theorem. Suppose that all the erasure rules are not argument- 
dropping. Then \C\ is a context for every context C. Therefore, t\ -in t2 implies \ti\ -*-\n\ |*2| for every 
pair of terms ii and t2. With the same argument as before, we can show that an infinite 7?.-rewriting 
sequence induces an infinite 7£i -rewriting sequence. Therefore, the termination of 7£i implies that of 7?.. ■ 



Notice that we assume no relation between Tli and 7Z2 in Theorem 1. This is an attractive feature in 
practice. Suppose that we intend to prove the termination of 71. We proceed to find a conservative erasure 
TV of 71 such that all rules in TV can be ordered under some reduction ordering. If there are rules in TV 
which can be strictly ordered, we remove them and use 7VX for the set of remaining rules. We can then 
find 1Z\ C 71 such that 7l[ is the conservative erasure of Tli. In this way, we have reduced the innermost 
termination of 71 to that of Tli. If Tli is empty, then we have proven that 71 is innermost terminating. 
Clearly, there is no need for splitting 71 before applying Theorem 1. 

The following TRS 7lwt is taken from [AG98]. Note that m,n are variables, :: is the infix operator for 
cons, 0 for nil and [n] for cons(n, nil). The function weight computes a weighted sum of natural numbers: 
weight(no :: n\ :: ■ ■ ■ :: Uk ■'■ nil) = no + 27*=1i * «i- 

(1) sum(s(m) :: x,n :: y) -> sum(m :: x,s(n) :: y) 
(2) sum(Q :: x,y) -> sum(x,y) 
(3) sum(\},y) -+y 
(4) weight([n]) -> n 
(5) weight(m :: n :: x) -¥ weight(sum(m :: n :: x, 0 :: x)) 

The last rule is self-embedding, and therefore the TRS cannot be proven terminating with a simplification 
ordering. Intuitively, 7?.wt is terminating because the length of sum(m :: n :: x, 0 :: x) is less than that of 
m::n:: x. We can use the erasure TRS S = {(sum-p-2),(s-p-l)} to capture this. The following TRS 7Z'wt 

is the <S-erasure of 7£wt. 
(1') n :: y ->• n :: y 
(2') y -» y 
(3') y-*y 
(4') weight([n]) -> n 
(5')  weight(m :: n :: x) -> weight(0 :: a;) 

Notice that this is a conservative erasure. For instance, let r be the right-hand side of rule (5), then e(r)s 
is {m :: n :: x}, in which the term is skeleton T^t-normal. Clearly, 7?4t can be ordered under a RPO. 
Since the rules (4') and (5') are strictly ordered, we delete them. Therefore, the innermost termination 
of 72.Sum, which consists of the rules (1), (2) and (3), implies that of 72.wt by Theorem 1. The termination 
of 7£sum is readily proven with a RPOS, and thus 7£wt is innermost terminating. In this case TZ^t is 
terminating since it is an overlay (actually non-overlapping) TRS. 

On the other hand, if we can split a TRS into some hierarchical combination, then we can take 
advantage of Theorem 2 below, which is a generalized version of Theorem 1. We first present a definition 
very close to Definition 5. 

Definition 6. Let 71 be the hierarchical combination of 7l,\ and Ti-2- We say that I —> r € TZ has an 
7i-2-conservative erasure if \l\ —> \r\ is a legal rewrite rule and t is skeleton 7Z.2-normal for every t G e(r). 
If all rules in 7Z have 7Z2-conservative erasures, then we say 71 has an ^-conservative erasure \7i\. 

Theorem 2. Let S be an erasure TRS and 71 be the hierarchical combination ofTZi and 7Z-2 = ^-21 U7^22 
such that \7Zi\ and |7^2| are 71.2-conservative. Assume that under some reduction ordering, the erasure of 
every rule in 7i,\ and 72-21 can be ordered and the erasure of every rule in Tv-22 can be strictly ordered, 
then the innermost termination of 7i.\ U 72-21 implies the innermost termination of 71. In the case where 
all erasure rules in S are not argument-dropping, the termination of 7t\ U7v-2i implies the termination of 
71. 

Proof This is very similar to the proof of Theorem 1. Suppose that there exists an infinite innermost 
71-rewriting sequence as follows: 

h ->K h ->7i • • • -*ft tn ->7J • • ■ 



where ti —> ti+i/(d, h —> r,, <7j) for some context d, rule Z; —> r^ £Tt and substitution <Ji. We show that 
there is an infinite innermost 7£i-rewriting sequence. 

Obviously, we can require that all proper subterms of t\ be in 7?.-normal form since we are handling 
innermost rewriting. This implies that all terms in e(ij) are in 7^2-normal form. We now show inductively 
that this is true for all ti (i = 1,2,...) by analyzing the difference between e{ti) and e{U+i). Let t £ e(£i+i) 
and we have the following. 

— t is in e(U). Then t is in 7^2-normal form by induction hypothesis. 
- t is not in e(ij). Note U = Ci[li(Ti] and U+i — Ci[ri<Ji]. If t contains T-JCTJ, then there must be some s in 

e(ij) such that s —> t. Note It —> Ti cannot be in 7^2 since s must be in 7^2-normal form. Thus, t is in 
^-normal form by Lemma 1. Otherwise, t is dropped from rjcr;. This means that t either equals scr, 
for some s € e{r) or t is a subterm of <Ji{x) for some x € dom(crj). In the latter case, t is obviously in 
7?.2-normal form since this is innermost rewriting. In the former case, t is in 72.2-normal form since s is 
skeleton 7£2-normal (note that TV is a 7^2-conservative erasure of 71) and a is an T^-normal (actually 
7£-normal) substitution. 

Therefore, for i — 1,2,..., all terms in e(U) are in ^-normal form. If k -» r, G II2, then \d\ must be 
a context since li&i would be a subterm of some t G e(£j) otherwise, which contradicts that all terms in 
e(U) are ^-normal. Thus, if U ->K2 t2 then |*i| ->|K2] |*a|- Since all rules in \Tl22\ are strictly ordered 
under some reduction ordering and all rules in |7?-i| U |7?-2i| are ordered, there must be a n such that for 
all i > n, li -4 Ti g" Tl22. This implies that we have an infinite innermost 7?.-rewriting sequence in which 
all applied rules are either from Tli or 7?.2i • Contrapositively, the innermost termination of 7£i U 7^21 
implies that of TZ. 

The second part of this theorem is really the same as that of Theorem 1. We thus omit the details. ■ 

We now present an application of Theorem 2. The following example is taken from the technical report 
version of [AG97]. 

Let R\ be a TRS consisting of the following rules, 

le(Q,y) —> true pred(s(x)) —» x 
le{s{x), 0) -> false minus(x, 0) -» x 

le(s(x), s(y)) —» le(x, y) minusix, s(y)) —> pred(minus(x, y)) 

and 72.2 be a TRS consisting of the following rules. 

(1) gcd(0,y)^0 
(2) gcd(s{x),0) ->0 
(3) 5c<Z(s(z),s(2/)) -> ifgcd(le(y,x),s(x),s(y)) 
(4) ifgcd(true, s(x), s(y)) -> gcd(minus(x,y),s(y)) 
(5) ifgcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) 

Let 7£ = 7£i U 7^2 ■ 7?. is clearly a hierarchical combination of 7£i and 7^2 • We form a <S-erasure 7?.' of 7£ 
as follows for <S = {(pred-p - 1), (minus-p - 1), (ifgcd-o - 1)}. Ti' = TZ[UTZ2, where Ti[ consists of the 
following rules 

le(0,y) -> true s(x) -> x 
le(s(x),Q) -» false x -> x 

le(s(x),s(y)) -> le(x,y) x -¥ x 

and Ti2 consists of the following rules. 

(1') gcd(0,y)->0 
(2') gcd{s(x),0) ->0 
(3') gcd(s(x),s(y)) -¥ ifgcd(s(x),s(y)) 
(4') ifgcd(s(x), s(y)) ->• ffcrf(x, s(j/)) 
(5') ifgcd(s{x), s(y)) -> 50%, s(x)) 



It can be readily verified that TV is a H2 -conservative erasure of U. Under the RPO with the precedence 
relation gcd « ifgcd and le y true, false, all the rules in TVX and the rule (3') can be ordered, and the rules 
(1'), (2'), (4') and (5') can be strictly ordered. By Theorem 2, the innermost termination of Hi U {(3)} 
implies that of H. Since Hi U {(3)} can be easily proven terminating with a RPOS, H is innermost 
termination. Note that H is a non-overlapping TRS and thus H is terminating. 

In practice, we may encounter the case where Hi = 0 when we apply Theorem 1, or H2i = 0 when we 
apply Theorem 2. Let use consider a concrete example. The TRS H consist of the following single rule. 

/GK*))->*(/(/(*))) 

If we form the S-erasure of 11 for <S = {(/-p-1)}, we obtain the following TRS \1l\, 

g{x) -> g{x) 

which cannot be strictly ordered under any reduction ordering. Therefore, if we apply Theorem 1, we 
make no progress. However, we can argue that 1Z is terminating as follows. Suppose that there is an 
infinite 7£-rewriting sequence: 

h ->K t2 • ■ ■ ->7e tn -in ■ ■ • 

We can choose t\ such that all proper subterms of ii are ^-terminating and t is ^-terminating for every t 
if \t\ is a subterm of ti. Then t\ must be of form f{s). Since s is ^-terminating, there is some tn = f(g(s')) 
such that s -»^ g(s') and tn+i = g(f(f(s')))- Jt is clear tnat l*i| = IWil = s(ls'D- Given the property 
of ti, we know that s' is ^-terminating. This implies that tn+\ is ^-terminating, contradicting that the 
above 7?.-rewriting sequence is infinite. Therefore, there exists no infinite 7?.-rewriting sequence, that is, 
H is terminating. We present a formalization of this idea as follows. 

Definition 7. Let S be an erasure TRS. Given a simplification ordering >;i on terms and a quasi prece- 
dence relation > on a finite set of function symbols, we can define a (strict) ordering >-2 «,s follows. Given 
s and t, s )~2t if either \s\ >-i \t\, or \s\ yx \t\ and s andt are of form f(si,... ,sm) and t = g(t\,.. .,tn), 
respectively, and f y g and 

— there is no erasure rule in S is associated with g, or 
— the erasure rule in S associated with g is an omitting rule, or 

~ fa-p-i) € «5 and sy^U- 

Lemma 3.  The ordering y2 defined in Definition 7 is well-founded and stable under substitutions. 

Proof This is straightforward since ^i is well-founded and stable under substitutions and y is well- 
founded. 

■ 

Theorem 3. Let S be an erasure TRS and H, be the hierarchical combination of H.\ and 1Z2 such that 
\Hi\ and |7^2| are ^-conservative, and the erasure of every rule in V,\ and1Z2 can be ordered under some 
simplification ordering y_i. Let y be a quasi precedence relation on a finite set of function symbols, and 
we form an ordering y2 as described in Definition 7. Assume that for every rule I —► r € 1Z2, either r is 
skeleton 1i.2-normal or I y2 r. Then the innermost termination ofR,\ implies that of1Z2. If all the erasure 
rules in S are not argument-dropping and for every rule I -> r €.1Z2, either r is skeleton 1Z2-terminating 
or I y2 r, then the termination of Hi implies that of1Z2. 

Proof Assume that IZi is innermost terminating but H is not. Let P(s) be a property on terms stating 
that s is not ^-terminating but all proper subterms of t are ^-terminating. Since y2 is well-founded by 
Lemma 3, we can choose a term s such that P(s) holds but P(t) fails for every t satisfying s y2 t. We 
can prove by a structural induction the claim that t is ^-terminating for every t such that all terms in 



e(t) are in Tl2 normal form and s y2 t. Please see the proof of Theorem 4 for details. Since P(s) holds, 
there exists an infinite innermost 7£-rewriting sequence of the following form, 

s = f(si,... ,sm) ->^ f(s'lt... ,s'm) = s' -+ns" ->K ••• 

where Sj -»^ sj and s'{ are in 7?.-normal form for i = 1,... , m and s' = la and s" = ra and I -* r € 11. 
I -)■ r must be a rule in TZ2 by Lemma 1 (2) and r clearly cannot be skeleton 7?.2-normal. Therefore, 
s' y2 s". It can be readily proven that s y2 s" since all rules in V, are ordered under y_i. Now let us 
assume that s" is of form g(t\,..., tn). We do a case analysis on the form of \s"\. 

- There exists no rule in S associated with g. This case is the same as the next one. 
- (g-o-(ii,...,i/.)) € S. Then we have 

l*"l = S(M, • • •, |*M-l|» |*ii+l|. • • ■. |*»t-i|, \Uk+i\, ■■■, \tn\)- 

Note that all terms in e(s") are in ^-normal form since |7?.| are 7^2-conservative. We have \s\ y_i 
ls"l ^1 l*jl f°r J e {1J • • ■ Jn} \ {*i> • • • Jk} since >;i is a simplification ordering. Hence, s y2 tj. With 
the above claim, these tj are ^-terminating since e(tj) C e(s"). Clearly, t^,..., tik are ^-terminating 
and this implies that all proper subterms of s" are ^-terminating. Hence s" is ^-terminating since 
P(s") holds and s y2 s". We have thus reached a contradiction. 

- (g-p-i) € S. Then \s"\ — \t,\. We have s' y2 U by the definition of y2, and this can lead to s y2 U. 
With the above claim, U is ^.-terminating since e(U) C e(s"). Clearly, tj are ^-terminating for all 
j 6 {l,...,i — l,i + l,n}. Again, this implies that s" is Tl terminating since P(s") holds and s y2 s". 
This is a contradiction, terminating. 

Therefore, 7£ must be terminating. It should be straightforward to prove the second part of the theorem. 
■ 

We present an application of Theorem 3. The following TRS % is due to Dershowitz. 

(1) -■(-,(*)) -* x 
(2) -,(arAy)-4-,(-.Ha;)))V-.(-.Hy))) 
(3) -(* V y) -> -.(-Hi))) A -(-(-(2/))) 

The following is the «S-erasure \Tl\ of 11 for S = {(->-p-l)}. 

x -» x 
x Ay —> x Vy 
x V y -» x A y 

Clearly, all rules in |7?.| are ordered in the RPO with the precedence A « V. Let ^1 denote this RPO. We 
can form an ordering y2 with the precedence relation -1 >- A,V.as described in Definition 7. Notice that 
the right side of (1) is 7^-skeleton terminating and both rules (2) and (3) can be ordered under y2. By 
Theorem 3, 72. is terminating since the rule in <S is not argument-dropping. 

Please see Example 6 for a more sophisticated application of Theorem 3 

3.2    Nondeterministic Erasure Rules 

For those who are familiar with the dependency pair approach (DPA) [AG97,AG98], it should be clear that 
the erasure technique presented so far can be regarded as a closely related idea recast into the framework 
of termination through transformation. However, the following development significantly separates ET 
from DPA. 

Let us now take a look at a limitation of the erasure technique developed so far before proceeding to 
formulate more sophisticated versions of ET. The rules associated with if are the following. 

if (true, x, y) -» x if (false, x,y) -> y 

10 



For the example TZPS, we would like to use the erasure TRS S = {(remove-p-2), (i/-p-3)} so that we can 
erase the following rule into cons(y,ys) -> cons(y,ys). 

remove(x,cons(y,ys)) ->• if(x = y,remove(x,ys),cons(x,remove(y,ys)) 

Unfortunately, we also obtain the erasure y -» x for the rule if(true,x,y) -» x, which is not a legal 
rewrite rule. This is a severe limitation in practice since if is widely used in defining TRSs. We extend 
the definition of erasure to resolve this problem. 

Definition 8. Given a function symbol f with arity n and 1 < U < ■ • ■ < ik < n, the following nonde- 
terministic rule is also an erasure rule. 

(f-p-(ii,---Jk)) f(xi,...,xn) -> {xh,...,xik} 

This means that f(xi,...,xn) can rewrite to xtj for each l<j<k. This rule is not argument-dropping 

if {ii,---,ik} = {1, ...,n}. 

With this extension, the erasure |i| of a term t is a multiset of terms, which can be defined as follows. 

' {t} if t is a variable; 

/(|*l|i • • • ) l*i,--l|> lfi;+l|) • • • i l*ifc-ll> l*ifc+l|i • • • ' l*n|) 
\t\ = < if t-f(ti,...,tn) and (f-o-(h,... ,ik)) € S; 

\th\ö---U\tik\ if t = /(*!,...,t„) and (/-p-(*i, -.. ,«*)) €5; 
./(|ii|,---,l*n|) if * = f(h>•••>tn) and otherwise. 

We use the notation f(\h\, ...,\tn\) for the multiset 

{/(si,...,sn) | Si € \U\ for 1 < t <n}, 

that is, the multiset of terms /(si,... ,sn), where Si range over \U\ for 1 < i < n. We also present the 
definition for e(t), which is the set of terms erased from t. 

0 if t is a variable; 

{Ui, ■ ■ ■, Uk } U Uj6{l,...,n}\{»i,...,»fc} e(^') 
if t = f(ti,...,tn) and (/-o-(ii,...,ü)) € <S; 

{*i)-"i*ti-i)*«i+i)--->*ifc-i)*ü+i>"-)*n} Ue^jJ U •••Ue(£jJ 
if t = f(h,...,tn) and (/-p-(ii,...,ü)) e <S; 

, Uje{i n} e(*j) if * = /(*!>• ••'*") and otherwise. 

e(t) = { 

In addition, the erasure \C\ of context C is a multiset, in which every element is either a context or a 
term. The erasure |<r| of substitution a with a finite domain is defined below. 

|CT| = {r | dom(r) = dom(c) and T{X) £ \<T(X)\ for every x £ dom(r)} 

Definition 9. Let > be an ordering on terms. We extend this ordering to the (nonempty) multisets of 
terms as follows: S ymax (ymax) T if and only if for every t e T there is an s € S such that s y {y) t, 
where S and T stand for the multisets of terms. 

Please notice the difference between ymax and y®. For instance, we have {c(x)} ymax {x,c(x)} but 

{c(x)} )^ {x,c(x)}. Also we observe that ymax is well-founded on the multisets of terms if y is well- 
founded on terms. 

Given a rule I -» r, the erasure of this rule is \l\ -» \r\. The erasure of a TRS is defined similarly. 
Note that we no longer consider the erasure of a rule (TRS) as a rule (TRS), but refer it as a rule (TRS) 
erasure. Given a reduction ordering y on terms, we say that the rule erasure |/| -> \r\ is strictly ordered 
under y if |/| ymax |r|, and it is ordered if |I| ymax \r\. 

11 



For instance, for S = {(remove-p-2), (i/-p-(2,3))}, the S-erasure of 7?.pg is the following. We write a 
term for the singleton set consisting of the term to support transparent syntax. 

(1') nil —> nil (2') cons(y,ys) —> {ys,cons(y,ys)} 
(3')   purge(nil) -> nil (4')   purge(cons(x,xs)) -¥ cons (x, purge (xs)) 

Under the RPO with the precedence purge y cons, the top two rule erasures are ordered and the rest are 
strictly ordered. 

Definition 10. An ordering y is a weak reduction ordering if its strict part y is well-founded and stable 
under substitutions and y is compatible wrt. term structure and stable under substitutions. Notice that 
a weak reduction ordering y may not be a reduction ordering since it is not required that y be also 
compatible wrt. term structure. 

Lemma 4. Let y be a weak reduction ordering which is total on ground terms. Given a ground substi- 
tution a, that is, a(x) is a ground term for every x 6 dom(cr), we have the following for every erasure 
TRSS. 

1. There exists a substitution amax G \o-\s such that for every r € \o~\s, o-max(x) y T(X) hold for all 
x € dom(cr). 

2. If t is a term such that Var(t) C dom(er), then for every S2 6 \tcr\s there exists s\ € \t\s such that 
SlO~max b S2. 

Proof For every x € dom(cr), we can choose a term tx € |cr(a;)| such that tx y t for all t £ |o"(a;)| since 
>: is total on ground terms. Let amax be the substitution with domain dom(cr) and o-max(x) = tx for all 
x € dom((j). By the definition of \cr\, we obtain (1). (2) can be readily proven by a structural induction 
on t. ■ 

Notice that we actually only require that the weak reduction ordering y be extendable to a total ordering 
on ground terms. For example, reduction orderings based on RPOS or polynomial interpretations satisfy 
the requirement. 

Definition 11. Let S be an erasure TRS. For every weak reduction ordering y which is total on ground 
terms, we can define an ordering y^ax as follows. 

h tTx h if and only if \h\s y
max \t2\s 

The next proposition states a crucial property of y^ax. 

Proposition 3. Given a weak reduction ordering y and an erasure TRS S, the ordering yjgax on terms 
is also a weak reduction ordering. 

Proof By Lemma 4, it is straightforward to prove that both ymax and y™ax are stable under substitu- 
tions. The compatibility of y^ax with term structure follows from the definition of the erasure function 
I-Is- ■ 
In general, it does not hold that ti y™ax t2 implies C[t±] ^g"1* C[t2] for every context C even if y is a 
reduction ordering. Therefore, we cannot infer that y*gax is a reduction ordering under the assumption 
that >^ is. 

Theorem 4. Let TRS 71 be the hierarchical combination ofR,\ and 7Z2 and \7Zi\s and \7Z2\s are TZ2- 
conservative TRS erasures for some erasure TRS S. Assume that y is a weak reduction ordering which 
is total on ground terms and I y™ax r for every rule I —> r £ TZi and I y™ax r for every rule I —> r £1Z2. 
Then the innermost termination of Tii implies that of TZ. 

12 



Proof Assume that Hi is innermost terminating but H is not. Let P(t) be a property on terms stating 
that t is not innermost ^-terminating and every proper subterm of t is innermost terminating. We can 
choose a ground term t such that P(t) holds and P(s) fails for every term s satisfying t y™ax s since 
ymax js well-founded. We now prove by a structural induction on s that s is innermost terminating if 
t y^ax s and all terms in e(s)s are innermost terminating. Assume that s is of form f(si,..., sn). We 
do a case analysis on the form of \s\. 

- No erasure rule in 5 is associated with /. This case is the same as the next one. 
- The erasure rule (/-o-(ii,... ,ü)) is in S. Then 

|s| = /(l*il. • • •) lsn-il> K+il. • • • > kit-ili ls«*+i|. • • •. KD- 

y must be a simplification ordering on ground terms since it is total on them. Therefore, for every 
j £ {1,..., n} \ {ii,..., ik}, t y^ax s y™ax SJ, and thus Sj is innermost terminating since e(sj) C e(s) 
implies that all terms in e(sj) are innermost terminating. Also s^ are innermost terminating for 
1 < j < k since they are in e(s). Therefore, all proper subterms of s are innermost terminating. Given 
the property of t, s is innermost ^-terminating. 

- The erasure rule (/-p-(»i, • • ■ ,u)) is in <S. This is similar to the previous case. 

Thus we have proven the claim that s is innermost ^-terminating if t y™ax s and all terms in e(s) are 
innermost terminating. 

Assume that t is of form f(ti,... ,£„). Since t is not innermost 7^-terminating and all proper terms 
of t are innermost ^-terminating, there is an infinite innermost rewriting sequence beginning with the 
following form, 

* = f(h ,...,*„) -W f(t[ 0 = ^s t" 
i 

where U ->*K t\ and t\ are in 7l-normal form for 1 < i < n, and t' = la and t" = ra for some I -+ r €11. 
Note that / cannot be a defined function symbol in 7£i by Lemma 1 (2). Hence, I -> r E 1Z-2, and this 
implies I ygax r. Therefore, we have t y%ax t1 y%ax t". Note that all terms in e{t") are 7l2-normal since 
all terms in e(r) are skeleton ^-normal. Therefore, all terms in e(t") are innermost ^-terminating by 
Lemma 1 (2). This implies that t" is ^-innermost terminating by the above proven claim, contradicting 
the assumption that t is not innermost ^-terminating. Therefore 1Z is innermost terminating. ■ 

For instance, Hv% can be readily proven innermost terminating with Theorem 4. We will present in 
Appendix A more realistic examples which can be proven (innermost) terminating with the applications 
of. Theorem 1, 2 and 4. We regard these theorems as the major contribution of this paper. 

We now present a theorem to demonstrate that the erasure technique can also be directly applied to 
termination proofs. We first establish a lemma needed later. 

Lemma 5. Let > be an ordering on terms. For multisets S, Ti and T% of terms, if T\ ymax T2, then 

SUTx y®SuT2. 

Proof   The lemma immediately follows from the definition of ymax and >-^\ ■ 

Theorem 5. Let S be an erasure TRS in which all the rules are not argument-dropping and y be a 
reduction ordering which is total on ground terms. Assume TZ = 7l\ U 7?-2 such that 

- \l\ = \r\ for all rules l-+r£Ri, and 
- \l\ \ \r\ ymax \r\ \ \l\ for all rules l->reK2. 

Then the termination ofTZ\ implies that ofR-2- 

13 



Proof   (sketch) Assume that h ->n t2/(C,l -> r,a). It suffices to prove that \ti\ >r® |i2| ii I -> r € Hi 

and \h\ y® \t2\ iU ^ r e TZ2. 
If / -> r € 72.1, then \l\ = \r\, which implies that |tj| = l^i- We now assume that I -¥ r £ 72-2. Let 

\C\ = {Ci,..., C/t}. Since all rules in <S are not argument-dropping, every C, is a context for 1 < i < k. 
Let us define multisets S,T\,T2 of terms as follows. 

S = Ui<<<*{Ci[s] I s € M and t € |/| n |r|} 

Ti = Ui<i<*{C*H I s € M and * e 1*1 \ M} 
T* = Ui<i<*{^W Is e M and * e |r| \ |/|} 

It can be readily proven with Lemma 4 that Ti ymax T2 holds. Therefore, Also we can show |ii| = SuTi 

and \t2\ = SUT2. By Lemma 5, we have |ii| ^® \t2\. ■ 

Theorem 5 immediately strengthens Theorem 12 (1) in [Zan94], where it is required that / does not occur 
in I for every I -> r € 71 if the erasure rule (/-p-(l,..., n)) is included in 5 3. Applications of Theorem 5 
can be found in Appendix A. 

4    Related Work 

There is a large number of results in the literature concerning termination proofs for various modular 
combinations of TRSs. We refer the reader to [Der95] for some clean explanation on many significant 
results in this area. The general scenario is to prove the termination of TZi U 72-2 for terminating TRSs 
7?i and 72-2 under some assumption on the relation between Hi and 1l2. We have found that most of the 
results such as the ones mentioned in [Der95], though interesting, make assumptions about 72i and K2 

which are too strong for the purpose of verifying the termination of hierarchical combination of 72-1 and 
72-2, sometimes. 

We are most interested in the case of hierarchical combination of 72-i and H2 where the defined 
function symbols in 72i are used in 72-2 in an essential way since this closely resembles the structure of a 
functional or logic program. This almost forces us to know the semantics of 72i to certain extent in order 
to prove the termination of the combined system. ET is proposed to address the issue in a (very) restricted 
manner. For instance, the use of the projection rule (remove-p-2) in the 72.pg example is simply to test 
that remove(x,ys) can never return a list of length greater than that of ys. This test succeeds because 
the generated erasure of 72.pg can be ordered. Let 7£pg be 72.pg in which the rule remove(x,nil) -» nil is 
replaced with another rule remove(x,nil) -> cons(x,nil), then the test will fail on TZ'pg since we cannot 
order nil -> cons(x,nil). Notice that TZ'pg is not terminating. This immediately implies that none of the 
results mentioned in [Der95] can give modular termination proofs for 7£pg. If they could, they would also 
prove this for fc'pg since 7?.pg and Tl'pg exhibit the very same characteristics to them. 

The dependency pair approach (DPA) [AG97,AG98], which inspired our work on erasure, deserves 
special mentioning. We regard ET as a similar idea cast into the general framework of termination 
through transformation. The technical explanation is that, to a large extent, erasure amounts to the use 
of weak reduction orderings, which are referred as weakly monotonic orderings stable under substitutions 
in papers on DPA. In general, DPA seems more powerful than ET but it is also (in our opinion) more 
involved. For instance, DPA uses unification to detect circles of dependency pairs and the set of usable 
rules, but this is currently unavailable in ET. However, this seems to be a less significant issue so far 
in our experiment, especially, after we combine ET with the freezing technique [Xi98]. We also plan to 
incorporate similar ideas into ET if the needs appear. We feel that the most significant advantage of ET 
over DPA is the availability of nondeterministic erasure rules. Because of the lack of a similar feature, 

3 A strengthened version of this theorem is proven in [MOZ96] which does allow the occurrences of / on the 
left-hand sides of the rules, but it is nonetheless essentially different from Theorem 5. Please see Example 4 in 
Appendix A. 

14 



DPA is often awkward in handling conditional if. For instance, we must order the following rule 

remove(x, cons{y,ys)) -» if(x = y,remove(x,ys),cons(x,remove{y,ys))) 

with a weakly monotone ordering if 7?.pg is to be proven terminating using DPA. Suppose that we 
use RPOS as the underlying approach to ordering the rule. We cannot assume remove y cons in 
the precedence relation since this prevents us from strictly ordering the following generated depen- 
dency pair PURGE(cons(x,xs)) > PURGE'(remove(x,xs)). If we map if(b,x,y) to x (y), then the rule 
if(false,x,y) -> y (if(true,x,y) -¥ x) cannot be ordered. As a consequence, the if function often needs 
to be "preprocessed" away when DPA is applied because it is difficult to synthesize a weakly monotone 
ordering based on RPOS or polynomial interpretations in the presence of if to order the generated de- 
pendency pairs. For instance, the following rules are introduced in the technical report version of [AG97] 
for handling the purge function example. 

remove(x,cons(y,ys)) -> ifremove(x = y,x,cons(y,ys)) 
ifremove(true,x, cons(y,ys)) -> remove(x,ys) 
ifremove(false,x,cons(y,ys)) -¥ cons(y,remove(x,ys)) 

Though the argument is that the introduction of these rules is to forbid rewriting terms under if-branches 
until the condition is resolved, we feel that this is also a bit unnatural at least since realistic TRSs are 
seldom formed in such a manner. Notice that the termination of 7£pg is independent of whether we rewrite 
terms under if-branches or not. It seems straightforward to make use of the weak reduction ordering ymax 

in DPA for handling if, and this can elegantly resolve the above issue. We will use some concrete examples 
to further compare ET or ET plus the freezing technique with DPA in Appendix A. 

The use of projection erasure rules bears some resemblance to distribution elimination [Zan94], but 
there are also many significant differences. Although it is clearly possible, there seems no attempt in 
[Zan94] to construct the ordering ymax from a given weak reduction ordering y, which we regard as a 
significant contribution of the paper. Also we mention that the use of an omitting rule (/-o-(l,..., n)) in 
case Ar(f) = n casually relates to dummy elimination [Fer96]. 

5    Conclusion 

We have presented a technique named erasure to facilitate the termination and innermost termination 
proofs, and this technique is inspired by the dependency pair approach in the literature. The erasure 
technique (ET) is simple to apply and effective in practice, and therefore is reasonable to expect that 
ET can be combined with other automated approaches to termination proofs for TRS such as freezing 
[Xi98]. However, we observe in practice that it is even difficult to scale an approach as simple as RPOS. 
This makes us believe that a more promising direction is to apply ET interactively. In this respect, we 
have tried ET extensively on various TRSs and the results are encouraging. We present some examples 
in Appendix A to substantiate this claim. 

In general, we are highly motivated to look for approaches to termination proofs for TRSs which are 
simple and effective. We intend to integrate these approaches into an interactive termination prover for 
TRSs. The user may be required to interact when applying these approaches but the needed interaction 
should not be overwhelming. We view this as promising direction to pursue so as to address the following 
dilemma: too much automation can severely hinder the scalability of a termination proof procedure for 
TRSs while too little can easily lead to an amount of required interaction which is simply overwhelming 
for the user. This should be especially clear to those who have used interactive theorem provers.such as 
PVS [ORR+96] or Isabelle [Law94] for proving the termination of recursively defined functions. 

References 

[AG97]        Thomas Arts and Jürgen Giesl. Proving innermost normalisation automatically. In Hubert Comon, 
editor, Proceedings of the 8th Conference on Rewriting Techniques and Applications, pages 157-171. 

15 



Springer-Verlag LNCS 1232, 1997. An extended version is available as Technical Report IBN 96/39. 
Technische Hochschule Darmstadt. 

[AG98]        Thomas Arts and Jürgen Giesl. Modularity of termination using dependency pairs. In Tobias Nipkow, 
editor, Proceedings of the 9th Conference on Rewriting Techniques and Applications, pages 226-240. 
Springer-Verlag LNCS 1379, 1998. 

[AZ95] Thomas Arts and Hans Zantema.   Termination of logical programs using semantic unification.   In 
Proceedings of the 5th International Workshop on Logical Program Synthesis and Transformation, 
pages 219-233, Utrecht, 1995. Springer-Verlag LNCS 1048. 

[BL87] Ahkem BenCherifa and Pierre Lescanne. Termination of rewriting systems by polynomial interpreta- 
tions and its implementation. SCP, 9(2):137-160, 1987. 

[BL90] Francoise Bellegarde and Pierre Lescanne.  Termination by completion.  Applicable Algebra in Engi- 
neering, Communication and Computing, 1:79-96, 1990. 

[CHR92]     P.-L. Curien, T. Hardin, and A. Rios.   Strong normalization of substitutions.   In I. M. Havel and 
V. Koubek, editors, Proceedings of Mathematical Foundations of Computer Science, pages 209-217. 
Springer-Verlag LNCS 629, 1992. 

[Der82]       Nachum Dershowitz. Orderings for term rewriting systems. Theoretical Computer Science, 17(3):279- 
301, 1982. 

[Der87]        Nachum Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3:69-116, 1987. 
[Der95]       Nachum Dershowitz. Hierarchical termination. In Proceedings of the 4th International Workshop on 

Conditional and Typed Rewriting Systems, pages 89-105. Springer-Verlag LNCS 968, 1995. 
[DJ91] Nachum Dershowitz and Jean-Pierre Jouannaud. Notations for rewriting. EATCS, 43:162-172, 1991. 
[Fer96] Maria Ferreira. Dummy elimination in equational rewriting. In Harald Ganzinger, editor, Proceedings 

of the 7th Conference on Rewriting Techniques and Applications, pages 78-92. Springer-Verlag LNCS 
1103, 1996. 

[Gra95]        Bernhard Grämlich.  Abstract relations between restricted termination and confluence properties of 
rewrite systems. Fundamenta Informaticae, 24(l/2):2-23, 1995. 

[KB70]        Donald E. Knuth and Peter B. Bendix.   Simple word problems in universal algebras.   In J. Leech, 
editor, Computational Problems in Abstract Algebra, pages 263-297. Pergamon Press, 1970. 

[KL80] Sam Kamin and Jean-Jacques Levy. Attempts for generalizing the recursive path orderings. Unpub- 
lished manuscript, February 1980. 

[Lan79]        Dallas Lankford. On proving term rewriting systems are noetherian. Technical Report Memo MTP-3, 
Louisiana Tech. University, 1979. 

[Law94]       Paul Lawrence. Isabelle: A Generic Theorem Prover. Springer-Verlag LNCS 828, 1994. 
[MOZ96]     Aart Middeldorp, Hitoshi Ohsaki, and Hans Zantema.   Transforming termination by self-labelling. 

In Proceedings  of 13th International  Conference  on Automated Deduction, pages 373-387,  New 
Brunswick, July/August 1996. Springer-Verlag LNCS 1104. 

[MTHM97] Robin Milner, Mads Tofte, Robert W. Harper, and D. MacQueen.   The Definition of Standard ML. 
MIT Press, Cambridge, Massachusetts, 1997. 

[ORR+96]   S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combining specification, proof 
checking, and model checking. In Rajeev Alur and Thomas A. Henzinger, editors, Proceedings of the 8th 
International Conference on Computer-Aided Verification, CAV '96, pages 411-414, New Brunswick, 
NJ, July/August 1996. Springer-Verlag LNCS 1102. 

[Pla78]        David Plaisted.   A recursively defined ordering for proving termination of term rewriting systems. 
Technical Report UIUC DCS-R-78-943, Univ. of Illinois at Urbana-Champaign, 1978. 

[Ste95a]       Joachim Steinbach. Automatic termination proofs with transformation orderings.  In Proceedings of 
the 6th Conference on Rewriting Techniques and Applications, pages 11-25. Springer-Verlag LNCS 
914, 1995. 

[Ste95b]      Joachim Steinbach. Simplification orderings: History of results. Fundamenta Informaticae, 24:47-87, 
1995. 

[SX98] Joachim Steinbach and Hongwei Xi. Freezing - termination proofs for classical, context sensitive and 
innermost rewriting. Technical report, Technische Universität München, 1998. 

[Xi98] Hongwei Xi. Towards automated termination proofs through "freezing". In 9th International Confer- 
ence on Rewriting Techniques and Applications, volume 1379 of Lecture Notes in Computer Science, 
pages 271-285, March-April 1998. 

[Zan94]       Hans Zantema. Termination of term rewriting: interpretation and type elimination. Journal of Sym- 
bolic Computation, 17:23-50, 1994. 

[Zan95]       Hans Zantema.   Termination of term rewriting by semantic labelling.   Fundamenta Informaticae, 
24:89-105, 1995. 

16 



A    Examples 

Example 1. We often combine ET with the freezing technique [Xi98] in practice. Let fcfact be the following 
TRS [KL80]. 

p(«(0))-»0- fact(0) -> s(0) 
p(s(s(x))) -* s(p{s(x))) fact(s{x)) -> s(x) * fact(p(s(x))) 

The following 7?.fact is a (p, s,ps, l)-frozen version of 7£fact, and therefore the termination of 7?.fact implies 
that of 7?.fact • 

(1) p(s(0))->0 (4)      ps(s(x)) -»• s(ps(x)) 
(2) pa(0) -> 0 (5)        /oct(O) -» s(0) 
(3) p(s(s(x))) ->• s(ps(a;)) (6)   fact(s(x)) -¥ s(x) * fact(ps(x)) 

The following 7?|act is the 5-erasure of 7lJact for 5 = {ps-p-1}. 

(1')       p(*(0))->0 (4') s(x)->s(a;) 
(2') 0->0 (5')        /act(0) -»• s(0) 
(3')   p(s(s(z))) -> s(z) (6')   fact(s(x))-> s(x) * fact(x) 

Under the RPO with the precedence fact y *, rules (2') and (4') can be ordered and the rest of the 
rules can be strictly ordered. Since the TRS consisting of rules (2) and (4) is obviously terminating, the 
termination of 72.fact follows from Theorem 1. Therefore, 7?.fact is terminating by a theorem on the freezing 
technique. 

If we apply DPA to 7£fact, the following dependency pair is generated. 

FACT(s(x)) > FACT(p(s(x))) 

It is unclear how this can be strictly ordered since we cannot project away the argument of p because of 
the existence of the rule p(s(s(x))) -> s(p(s(x))). If one argues that this example is too contrived, then 
the following example exhibits the same characteristics. 

Example 2. In the following TRS 7£iog, h{n) = |n/2j for every natural number n, and log(n) = l+log2(n) 
for n > 0. 

h(0) -> 0 log(0) -> 0 
h(s(0)) -*• 0 log(*(a:)) -> s(\og(h(s(x)))) 

h(s(s(x))) -> s(h(x)) 

The last rule is self-embedding, and therefore the termination of this TRS cannot be proven with a 
simplification ordering. We form an (h, s, 1, /is)-frozen version TZlos of 7l\og as follows. 

(1) h(0) -> 0 (5)    hs(s(x)) -> s(h(x)) 
(2) Ä(*(0))-+0 (6)        log(0)->0 
(3) hs(0) -> 0 (7)   log(a(ar)) -> s(\og(hs(x))) 
(4) /i(*(5(x))) -> «(/»(a:)) 

We can prove the termination of 7^ by forming its 5-erasure for S = {h-p-1, fts-p-1}. This then implies 
the termination of 7£iog. We omit the details that are straightforward to fill in. Notice that this example 
can not handled by DPA for the same reason as explained in the previous example. 

In general, we intend to apply various transformations for proving the (innermost) termination of a 
TRS Tl. We generate a chain of TRSs H = 7li, 7?-2, • • •, T^n such that the (innermost) termination of 
Hi+\ implies that of 72-j for 1 < i < n and the (innermost) termination of H.n can be proven with some 
basic approach such as RPOS or polynomial interpretations. The problem with DPA is that it generates 
a set of dependency pairs rather than a TRS, and therefore it is difficult to be combined with other 
transformational approaches. 

17 



Example 3. The following TRS 7£qs defines a quicksort function on lists. Let 7£i consist of all these rules 
except the last 2, and 7?-2 consist of the last 2 rules. Then 7?.qs is the hierarchical combination of TZi and 
n2. 

(1) if(true,x,y)—>x 
(2) if (false, x,y) -> y 
(3) 0 < x ->■ frwe 
(4) s(z) < 0 ->• /afae 
(5) s(a:) < s(y) ->■ x < y 
(6) ptefo 0) -> Ö 
(7) gte(x, y :: ys) -> if(x<y,y :: p£e(x, ys),gte(x, ys)) 
(8) W(a:,D)->0 
(9) lt(x,y:: ys) -> i/(a; < y,lt(x,ys),y :: lt(x,ys)) 

(10) [] @ i/s -)• ys 
(11) (x :: zs) @ 2/s —> a; :: (zs @ ys) 
(12) gmcfcsorf(Q) ->■ Ö 
(13) quicksort(x :: xs) -¥ quicksort(lt(x,xs)) @ [a;] @ quicksort(gte(x, xs)) 

The following is the S-erasure of 71 for S = {(i/-p-(2,3)), (#fe-p-2), (/i-p-2)}. 

(1') {x,y}->2; 
(2') {x,y}^y 
(3') 0 < x -> irae 
(4') s(x) < 0 -*• Me 
(5') s(x) < s(y) -+x<y 
(6') [] -> [] 
(7') 2/:: ys-^ {y::ys,ys} 
(8') 0 -> G 
(9') y :: ys-^ {ys,y :: ys} 

(10') rj @ ys -+ ys 
(11') (a; :: zs) @ ys -+ x :: (xs @ ys) 
(12') quicksort^) -> 0 
(13') quicksort(x :: a;s) —► quicksort(xs) @ [x] @ quicksort(xs) 

Under the RPO with precedence quicksort >- @, < >- true, false, all rule erasures in 7£i can be ordered 
and all rule erasures in 7?-2 can be strictly ordered. By Theorem 4, the innermost termination of 7£qs 

follows from that of 7£i. It can be readily proven with a RPO that IZi is (innermost) terminating, and 
therefore 7?.qs is innermost terminating. This implies that 7£qs is terminating since it is non-overlapping. 

A similar example also appears in the technical report version of [AG97], but if is "preprocessed" 
away. The termination of that example can be readily proven with Theorem 2. 

Example 4- Let IZi be the following TRS. 

(1) /(0) -> 0 
(2) f (branch^), x)) -» branch^, f(x)) 
(3) f(branch(branch(x,y),z)) —> f(branch(x,branch(y,z))) 
(4) 5(0) -»• 0 
(5) g(branch(x,$)) —) branch($,g(x)) 
(6) g(branch(x, branch(y, z))) —> g(branch(branch(x, y), z)) 

18 



The following is the S-erasure of H\ for S = {branch-p-(1,2)}. 

(!') /(0) "> 0 
(2') {/(0),/W}->{0,/(x)} 
(3')   {/(*)J(vU(*)}-> {/(*),/(!/),/(*)} 
(4') 5(0) -> 0 
(5') {s(aO,0(0)}-»{M*)} 
(6')    {<?(*), <?(y), <?(*)} -> {<?(*), s(y),s(z)} 

By Theorem 5, the termination of 7?-i follows from the termination of H2 — {(3), (6)}. We now construct 
a TRS 7^.3 below, which is an (/, branch, l,ßranch)-hozen version of 7?.2- 

fbranch(branch(x, y),z) -> fbranch(x, branch(y, z)) 
g(branch(x,branch(y,z))) —> g(branch(branch(x,y),z)) 

The termination of H3 is easily proven with a RPOS, and therefore, 7£i is terminating. We point out that 
it would be greatly involved (though possible) if we applied the freezing technique to 7£i directly. 

Notice that Theorem 12 [Zan94] cannot be applied to this example since / has occurrences on the left- 
hand sides of the rules. The strengthened version of this theorem in [MOZ96] cannot handle this example, 
either. 

Example 5. The termination of the following TRS CTO describes the process of substitution in combinatory 
logic, and the proof for the termination of 00 in [CHR92] is involved. Some simplified proofs have been 
given in [Zan94,Zan95]. 

(1) A(i)oy->A(io(l.(j/ot))) (5) loid-tl 
(2) (x ■ y) o z —> (x o z) ■ (y o z) (6)    1 o (x ■ y) -> x 
(3) (x o y) o z —► x o (y o z) (7)   t o [x ■ y) —> y 
(4) id o x —> x 

The following is the 5-erasure of CTQ for 5 = {(--p-(l, 2))}. 

(1') A(i)oy->{A(iol),A(io(j,ot))} (5') loid-»l 
(2') {xo z,y o z}—> {x o z,yo z] (6') {1 o x, 1 o y] -> a; 
(3') (xoy)oz-^xo(yoz) (7') {t ° x, | o y] ->• y 
(4') id ox -> x 

As shown in [Zan94], all the rule erasures except the second one can be strictly ordered under a total 
ordering. By Theorem 5, the termination of <JQ follows from the termination of the TRS consisting of the 
rule (x ■ y) o z —> (x o z) • (y o z), which is obvious. Notice that the distribution elimination technique 
[Zan94] cannot be directly applied to this example because of the occurrences of • on the left-hand sides 
of some rules. If we replace the last rule in ao with f ° (x ■ y) -+ y ■ x, then the strategy used in [Zan94] 
would no longer work but Theorem 5 could still be applied. 

Example 6. The following example is adopted from the technical report version of [AG97], where it is 
formed as a variation of an algorithm in [?]. The purpose of the function rename(x,y,t) is to replace 

19 



every free occurrence of the variable x in the term t with the variable y. 

(1) true Ay -> y 
(2) false A y -» false 

(3) 0 = 0-»" *™e 
(4) (x :: xs) = 0 -> /a^e 
(5) 0 = (V :: 2/s) -» /a/se 
(6) (i :: xs) = (y :: j/s) -t (x = y) A (xs = ys) 
(7) var(xs) = var(ys) -> xs = ys 
(8) var(xs) = apply(s, t) -» /a/se 
(9) r;ar(a;s) = lambda(x, s) -> /a/se 

(10) apply(s, t) = var(ys) —» /a/se 
(11) apply(s, t) - apply(u, v) -¥ (s = u) A(t - v) 
(12) apply(s, t) — lambda(x, u) -» /a/se 
(13) lambda(x, s) = var(ys) -> /a/se 
(14) lambda(x, s) = apply(u, v) -> /a/se 
(15) lambda(x, s) = lambda(y, t) -t (x = y) A(s = t) 
(16) if(true,var(xs),var(ys)) -+var(xs) 
(17) if (false, var(xs),v ar(ys)) —> var(ys) 
(18) rename(var(xs),var(ys),var(zs)) -> z/(:rs = zs,var(ys),var(zs)) 
(19) rename(x,y, apply(s, t)) -» apply(rename(x,y, s),rename(x, y, t)) 
(20) rename(x, y, lambda(z, t)) -> lambda(», rename(x, y, rename(z, •, t))) 

Note that • in rule (20) stands for t>ar([z,2/,/am&da(z,£)]). Let fci consist of the first 17 rules and 1Z2 

consist of the rest of rules. Then H = 7li U K2 is a hierachical combination of 7li and 7£2- Clearly, 
72-1 can be proven terminating with some RPO. We form the following 5-erasure \U\ of H for S = 
{(A-p-2), (=-o-(l,2)), (var-o-1), (t/-o-(l,2,3)), (rename-p-3), (/am&da-o-l)}. 

(!') y->y 
(2') y —> false 
(3') = —> true 
(4') — —> false 
(5') = —> /a/se 
(6') = -> = 
(7') = -» = 
(8') = —» /a/se 
(9') = —> false 

(10') = —> false 
(11') = -¥ = 
(12') — —► false 
(13') = —)• false 
(14') = —} false 
(15') = -> = 
(16') i/ -4 var 
(17') i/ —>■ var 
(18') var —> if 
(19') apply(s,t) -» apply(s,t) 
(20') lambda(t) -» lambda(i) 

It can be readily verified that |7£| is ^-conservative. Under the RPO with the precedence relation 
true w false « = « war = i/, all the rules can be ordered. Note that rule (2') is ordered because we can 
require that false be a constant with the lowest precedence. Let >i denote this RPO. We can then form 
an ordering ^2 with the precedence rename y apply, lambda as described in Definition 7. Then the right 

20 



side of rule (18) is ^-skeleton normal, and both rules (19) and (20) can be ordered under y2- Therefore, 
TZ is terminating by Theorem 3. 

21 



Pacific Software Research Center 
Department of Computer Science and Engineering 
(503)690-1151 
Internet: pacsoft@cse.ogi.edu 
World Wide Web: http://www.cse.ogi.edu/PacSoft/ 

Cover: The chart on the cover tracks the problem 
severity factor (PSF) of each of PacSoft's program 
transformation tools during the software development 
cycle. Low PSFs indicate that detected defects in the 
software have been fixed. This chart was constructed 
by Alexei Kotov, a graduate student for the Pacific 
Software Research Center. 

Oregon Graduate Institute of Science & Technology 
P.O. Box 91000 

Portland, OR 97291-1000 


